Skip to main content

Advertisement

Log in

Fluid management in children with volume depletion

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Volume depletion is a common condition and a frequent cause of hospitalization in children. Proper assessment of the patient includes a detailed history and a thorough physical examination. Biochemical tests may be useful in selected cases. Understanding the pathophysiology of fluid balance is necessary for appropriate management. A clinical dehydration scale assessing more physical findings may help to determine dehydration severity. Most dehydrated children can be treated orally; however, intravenous therapy may be indicated in patients with severe volume depletion, in those who have failed oral therapy, or in children with altered consciousness or significant metabolic abnormalities. Proper management consists of restoring circulatory volume and electrolyte balance. In this paper, we review clinical aspects, diagnosis, and management of children with volume depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jain A (2015) Body fluid composition. Pediatr Rev 36:141–150. https://doi.org/10.1542/pir.36-4-141

    Article  PubMed  Google Scholar 

  2. Bockenhauer D, Zieg J (2014) Electrolyte disorders. Clin Perinatol 41:575–590. https://doi.org/10.1016/j.clp.2014.05.007

    Article  PubMed  Google Scholar 

  3. Bhave G, Neilson EG (2011) Volume depletion versus dehydration: how understanding the difference can guide therapy. Am J Kidney Dis 58:302–309

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steiner MJ, DeWalt DA, Byerley JS (2004) Is this child dehydrated? JAMA 291:2746–2754. https://doi.org/10.1001/jama.291.22.2746

    Article  CAS  PubMed  Google Scholar 

  5. Powers KS (2015) Dehydration: isonatremic, hyponatremic, and hypernatremic recognition and management. Pediatr Rev 36:274–283. https://doi.org/10.1542/pir.36-7-274

    Article  PubMed  Google Scholar 

  6. Boluyt N, Bollen CW, Bos AP, Kok JH, Offringa M (2006) Fluid resuscitation in neonatal and pediatric hypovolemic shock: a Dutch Pediatric Society evidence-based clinical practice guideline. Intensive Care Med 32:995–1003. https://doi.org/10.1007/s00134-006-0188-4

    Article  PubMed  Google Scholar 

  7. Danziger J, Zeidel M, Parker MJ (2012) Renal physiology: a clinical approach. Lippincott Williams & Wilkins, Baltimore and Philadeplphia

    Google Scholar 

  8. Treschan TA, Peters J (2006) The vasopressin system: physiology and clinical strategies. Anesthesiology 105:599–612. https://doi.org/10.1097/00000542-200609000-00026

    Article  CAS  PubMed  Google Scholar 

  9. Bankir L, Bichet DG, Morgenthaler NG (2017) Vasopressin: physiology, assessment and osmosensation. J Inter Med 282:284–297. https://doi.org/10.1111/joim.12645

    Article  CAS  Google Scholar 

  10. Demiselle J, Fage N, Radermacher P, Asfar P (2020) Vasopressin and its analogues in shock states: a review. Ann Intensive Care 10:9. https://doi.org/10.1186/s13613-020-0628-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bockenhauer D, Bichet DG (2014) Urinary concentration: different ways to open and close the tap. Pediatr Nephrol 29:1297–1303. https://doi.org/10.1007/s00467-013-2526-4

    Article  PubMed  Google Scholar 

  12. Atiyeh BA, Dabbagh SS, Gruskin AB (1996) Evaluation of renal function during childhood. Pediatr Rev 17:175–180. https://doi.org/10.1542/pir.17-5-175

    Article  CAS  PubMed  Google Scholar 

  13. Shahoud JS, Sanvictores T, Aeddula NR (2021) Physiology, arterial pressure regulation. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL

  14. Koeppen BM, Stanton BA (2013) Renal physiology. Elsevier Mosby, Philadelphia, PA

    Google Scholar 

  15. Bichet DG (2019) Regulation of thirst and vasopressin release. Annu Rev Physiol 81:359–373. https://doi.org/10.1146/annurev-physiol-020518-114556

    Article  CAS  PubMed  Google Scholar 

  16. Hoxha TF, Azemi M, Avdiu M, Ismaili-Jaha V, Grajqevci V, Petrela E (2014) The usefulness of clinical and laboratory parameters for predicting severity of dehydration in children with acute gastroenteritis. Med Arch 68:304–307. https://doi.org/10.5455/medarh.2014.68.304-307

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meyers RS (2009) Pediatric fluid and electrolyte therapy. J Pediatr Pharmacol Ther 14:204–211. https://doi.org/10.5863/1551-6776-14.4.204

    Article  PubMed  PubMed Central  Google Scholar 

  18. Friedman JN, Goldman RD, Srivastava R, Parkin PC (2004) Development of a clinical dehydration scale for use in children between 1 and 36 months of age. J Pediatr 145:201–207. https://doi.org/10.1016/j.jpeds.2004.05.035

    Article  PubMed  Google Scholar 

  19. Chen L, Kim Y, Santucci KA (2007) Use of ultrasound measurement of the inferior vena cava diameter as an objective tool in the assessment of children with clinical dehydration. Acad Emerg Med 14:841–845. https://doi.org/10.1197/j.aem.2007.06.040

    Article  PubMed  Google Scholar 

  20. Calcaterra V, Cena H, Manuelli M, Sacchi L, Girgenti V, Larizza C, Pelizzo G (2019) Body hydration assessment using bioelectrical impedance vector analysis in neurologically impaired children. Eur J Clin Nutr 73:1649–1652. https://doi.org/10.1038/s41430-018-0384-7

    Article  PubMed  Google Scholar 

  21. Vega RM, Avner JR (1997) A prospective study of the usefulness of clinical and laboratory parameters for predicting percentage of dehydration in children. Pediatr Emerg Care 13:179–182. https://doi.org/10.1097/00006565-199706000-00001

    Article  CAS  PubMed  Google Scholar 

  22. Kopac M (2019) Evaluation and treatment of alkalosis in children. J Pediatr Intensive Care 8:51–56. https://doi.org/10.1055/s-0038-1676061

    Article  PubMed  Google Scholar 

  23. Zieg J (2014) Evaluation and management of hyponatraemia in children. Acta Paediatr 103:1027–1034. https://doi.org/10.1111/apa.12705

    Article  PubMed  Google Scholar 

  24. Zieg J (2021) Diagnosis and management of hypernatraemia in children. Acta Paediatr 111:505–510. https://doi.org/10.1111/apa.16170

    Article  PubMed  Google Scholar 

  25. Moritz ML, Ayus JC (2002) Disorders of water metabolism in children: hyponatremia and hypernatremia. Pediatr Rev 23:371–380

    Article  PubMed  Google Scholar 

  26. Metheny NA, Krieger MM (2020) Salt toxicity: a systematic review and case reports. J Emerg Nurs 46:428–439. https://doi.org/10.1016/j.jen.2020.02.011

    Article  PubMed  Google Scholar 

  27. Shenoy S, Bockenhauer D (2023) Challenges in using fractional excretion of sodium in the assessment of salt poisoning. Acta Paediatr. https://doi.org/10.1111/apa.16734

    Article  PubMed  Google Scholar 

  28. Seethapathy H, Fenves AZ (2022) Fractional excretion of sodium (FENa): an imperfect tool for a flawed question. Clin J Am Soc Nephrol 17:777–778. https://doi.org/10.2215/CJN.04750422

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adrogue HJ, Madias NE (2012) The challenge of hyponatremia. J Am Soc Nephrol 23:1140–1148. https://doi.org/10.1681/ASN.2012020128

    Article  CAS  PubMed  Google Scholar 

  30. Buccigrossi V, Lo Vecchio A, Bruzzese E, Russo C, Marano A, Terranova S, Cioffi V, Guarino A (2020) Potency of oral rehydration solution in inducing fluid absorption is related to glucose concentration. Sci Rep 10:7803. https://doi.org/10.1038/s41598-020-64818-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King CK, Glass R, Bresee JS, Duggan C, CfDCa P (2003) Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep 52:1–16

    PubMed  Google Scholar 

  32. Guarino A, Ashkenazi S, Gendrel D, Lo Vecchio A, Shamir R, Szajewska H, European Society for Pediatric Gastroenterology, Hepatology, and Nutrition, European Society for Pediatric Infectious Diseases (2014) European Society for Pediatric Gastroenterology, Hepatology, and Nutrition/European Society for Pediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: update 2014. J Pediatr Gastroenterol Nutr 59:132–152. https://doi.org/10.1097/MPG.0000000000000375

    Article  PubMed  Google Scholar 

  33. Freedman SB, Hall M, Shah SS, Kharbanda AB, Aronson PL, Florin TA, Mistry RD, Macias CG, Neuman MI (2014) Impact of increasing ondansetron use on clinical outcomes in children with gastroenteritis. JAMA Pediatr 168:321–329. https://doi.org/10.1001/jamapediatrics.2013.4906

    Article  PubMed  Google Scholar 

  34. Leitz G, Hu P, Appiani C, Li Q, Mitha E, Garces-Sanchez M, Gupta R (2019) Safety and efficacy of low-dose domperidone for treating nausea and vomiting due to acute gastroenteritis in children. J Pediatr Gastroenterol Nutr 69:425–430. https://doi.org/10.1097/MPG.0000000000002409

    Article  CAS  PubMed  Google Scholar 

  35. Fonseca BK, Holdgate A, Craig JC (2004) Enteral vs intravenous rehydration therapy for children with gastroenteritis: a meta-analysis of randomized controlled trials. Arch Pediatr Adolesc Med 158:483–490. https://doi.org/10.1001/archpedi.158.5.483

    Article  PubMed  Google Scholar 

  36. Moritz ML, Ayus JC (2003) Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics 111:227–230. https://doi.org/10.1542/peds.111.2.227

    Article  PubMed  Google Scholar 

  37. Shukla S, Basu S, Moritz ML (2016) Use of hypotonic maintenance intravenous fluids and hospital-acquired hyponatremia remain common in children admitted to a general pediatric ward. Front Pediatr 4:90. https://doi.org/10.3389/fped.2016.00090

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moritz ML, Ayus JC (2015) Hyponatraemia: isotonic fluids prevent hospital-acquired hyponatraemia. Nat Rev Nephrol 11:202–203. https://doi.org/10.1038/nrneph.2014.253

    Article  CAS  PubMed  Google Scholar 

  39. Neville KA, Verge CF, O’Meara MW, Walker JL (2005) High antidiuretic hormone levels and hyponatremia in children with gastroenteritis. Pediatrics 116:1401–1407. https://doi.org/10.1542/peds.2004-2376

    Article  PubMed  Google Scholar 

  40. Chromek M, Jungner A, Rudolfson N, Ley D, Bockenhauer D, Hagander L (2020) Hyponatraemia despite isotonic maintenance fluid therapy: a time series intervention study. Arch Dis Child 106:491–495. https://doi.org/10.1136/archdischild-2019-318555

    Article  PubMed  Google Scholar 

  41. Feld LG, Neuspiel DR, Foster BA, Leu MG, Garber MD, Austin K, Basu RK, Conway EE Jr, Fehr JJ, Hawkins C, Kaplan RL, Rowe EV, Waseem M, Moritz ML, Subcommittee on fluid and electrolyte therapy (2018) Clinical practice guideline: maintenance intravenous fluids in children. Pediatrics 142:e20183083. https://doi.org/10.1542/peds.2018-3083

    Article  PubMed  Google Scholar 

  42. Neville KA, Verge CF, Rosenberg AR, O’Meara MW, Walker JL (2006) Isotonic is better than hypotonic saline for intravenous rehydration of children with gastroenteritis: a prospective randomised study. Arch Dis Child 91:226–232. https://doi.org/10.1136/adc.2005.084103

    Article  CAS  PubMed  Google Scholar 

  43. Moritz ML, Ayus JC (2012) Maintenance intravenous fluids with 0.9% sodium chloride do not produce hypernatraemia in children. Acta Paediatr 101:222–223. https://doi.org/10.1111/j.1651-2227.2011.02535.x

    Article  CAS  PubMed  Google Scholar 

  44. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, Nyeko R, Mtove G, Reyburn H, Lang T, Brent B, Evans JA, Tibenderana JK, Crawley J, Russell EC, Levin M, Babiker AG, Gibb DM, FEAST Trial Group (2011) Mortality after fluid bolus in African children with severe infection. N Engl J Med 364:2483–2495. https://doi.org/10.1056/NEJMoa1101549

    Article  CAS  PubMed  Google Scholar 

  45. Holliday MA, Segar WE (1957) The maintenance need for water in parenteral fluid therapy. Pediatrics 19:823–832

    Article  CAS  PubMed  Google Scholar 

  46. Cunliffe M, Potter F (2006) Four and a fifth and all that. Br J Anaesth 97:274–277. https://doi.org/10.1093/bja/ael212

    Article  CAS  PubMed  Google Scholar 

  47. Bellieni CV (2018) Rehydration after diarrhea in newborns. In: Buonocore G, Bracci R, Weindling M (eds) Neonatology: a practical approach to neonatal diseases. Springer, Cham, pp 1365–1372

    Chapter  Google Scholar 

  48. Moritz ML, Ayus JC (2014) Management of hyponatremia in various clinical situations. Curr Treat Options Neurol 16:310. https://doi.org/10.1007/s11940-014-0310-9

    Article  PubMed  Google Scholar 

  49. Gankam Kengne F, Decaux G (2018) Hyponatremia and the brain. Kidney Int Rep 3:24–35. https://doi.org/10.1016/j.ekir.2017.08.015

    Article  PubMed  Google Scholar 

  50. Moritz ML, Ayus JC (2010) New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatric Nephrol 25:1225–1238. https://doi.org/10.1007/s00467-009-1323-6

    Article  Google Scholar 

  51. Moritz ML, Ayus JC (2010) 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis 25:91–96. https://doi.org/10.1007/s11011-010-9173-2

    Article  PubMed  Google Scholar 

  52. Ayus JC, Moritz ML (2019) Misconceptions and barriers to the use of hypertonic saline to treat hyponatremic encephalopathy. Front Med (Lausanne) 6:47. https://doi.org/10.3389/fmed.2019.00047

    Article  PubMed  Google Scholar 

  53. Powers KS (2016) Author’s response. Pediatr Rev 37:e32–e34. https://doi.org/10.1542/pir.2016-004

    Article  PubMed  Google Scholar 

  54. Sterns RH, Hix JK (2009) Overcorrection of hyponatremia is a medical emergency. Kidney Int 76:587–589. https://doi.org/10.1038/ki.2009.251

    Article  PubMed  Google Scholar 

  55. Coulthard MG, Haycock GB (2003) Distinguishing between salt poisoning and hypernatraemic dehydration in children. BMJ 326:157–160. https://doi.org/10.1136/bmj.326.7381.157

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schwaderer AL, Schwartz GJ (2005) Treating hypernatremic dehydration. Pediatr Rev 26:148–150. https://doi.org/10.1542/pir.26-4-148

    Article  PubMed  Google Scholar 

  57. Moritz ML, Manole MD, Bogen DL, Ayus JC (2005) Breastfeeding-associated hypernatremia: are we missing the diagnosis? Pediatrics 116:e343–e347. https://doi.org/10.1542/peds.2004-2647

    Article  PubMed  Google Scholar 

  58. Bockenhauer D, Bichet DG (2017) Nephrogenic diabetes insipidus. Curr Opin Pediatr 29:199–205. https://doi.org/10.1097/MOP.0000000000000473

    Article  CAS  PubMed  Google Scholar 

  59. Bockenhauer D, Aitkenhead H (2011) The kidney speaks: interpreting urinary sodium and osmolality. Arch Dis Child Educ Pract Ed 96:223–227. https://doi.org/10.1136/archdischild-2011-300115

    Article  CAS  PubMed  Google Scholar 

  60. Christ-Crain M, Gaisl O (2021) Diabetes insipidus. Presse Med 50:104093. https://doi.org/10.1016/j.lpm.2021.104093

    Article  PubMed  Google Scholar 

  61. Turchin A, Seifter JL, Seely EW (2003) Clinical problem-solving. Mind the gap. N Engl J Med 349:1465–1469. https://doi.org/10.1056/NEJMcps031078

    Article  CAS  PubMed  Google Scholar 

  62. Taeusch HW, Ballard RA, Gleason CA (2005) Avery’s diseases of the newborn. Elsevier Saunders, Philadelphia

    Google Scholar 

  63. Chow E, Fox N, Gama R (2008) Effect of low serum total protein on sodium and potassium measurement by ion-selective electrodes in critically ill patients. Br J Biomed Sci 65:128–131. https://doi.org/10.1080/09674845.2008.11732815

    Article  CAS  PubMed  Google Scholar 

  64. Fortgens P, Pillay TS (2011) Pseudohyponatremia revisited: a modern-day pitfall. Arch Pathol Lab Med 135:516–519. https://doi.org/10.5858/2010-0018-RS.1

    Article  PubMed  Google Scholar 

  65. Urakami C, Matsuno R, Omachi T, Yamazoe T, Kaneko K (2021) Mind the gap in hyponatremia! J Pediatr Hematol Oncol 43:e742–e743. https://doi.org/10.1097/MPH.0000000000002024

    Article  PubMed  Google Scholar 

  66. Semler MW, Kellum JA (2019) Balanced crystalloid solutions. Am J Resp Crit Care Med 199:952–960. https://doi.org/10.1164/rccm.201809-1677CI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zampieri FG, Machado FR, Biondi RS, Freitas FGR, Veiga VC, Figueiredo RC, Lovato WJ, Amendola CP, Serpa-Neto A, Paranhos JLR, Guedes MAV, Lucio EA, Oliveira-Junior LC, Lisboa TC, Lacerda FH, Maia IS, Grion CMC, Assuncao MSC, Manoel ALO, Silva-Junior JM, Duarte P, Soares RM, Miranda TA, de Lima LM, Gurgel RM, Paisani DM, Correa TD, Azevedo LCP, Kellum JA, Damiani LP, Brandao da Silva N, Cavalcanti AB, BaSICS investigators and the BRICNet members (2021) Effect of intravenous fluid treatment with a balanced solution vs 0.9% saline solution on mortality in critically ill patients: the BaSICS randomized clinical trial. JAMA 326:1–12. https://doi.org/10.1001/jama.2021.11684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scioscia A, Horvat C, Moritz ML, Fuhrman D (2022) Balanced crystalloids versus normal saline in children with critical asthma. Children 9:1480. https://doi.org/10.3390/children9101480

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bates for reviewing the article and enhancing its intellectual content as well as improving the language. We would also like to thank Kush Doshi for his contribution in reviewing the article.

Author information

Authors and Affiliations

Authors

Contributions

Jakub Zieg: contributed to the concept and design of the article, drafted the article, and revised it critically for intellectual content. Deepti Narla: contributed to the concept and design of the article and revised article critically for its intellectual content. Lucie Gonsorcikova: revised article critically for its intellectual content. Rupesh Raina: contributed to the concept and design of the article, revised the article for its intellectual content, and approved the final version to be published.

Corresponding author

Correspondence to Rupesh Raina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Answers: 1. d; 2. b; 3. a; 4. c; 5. d

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieg, J., Narla, D., Gonsorcikova, L. et al. Fluid management in children with volume depletion. Pediatr Nephrol 39, 423–434 (2024). https://doi.org/10.1007/s00467-023-06080-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06080-z

Keywords

Navigation