Skip to main content

Advertisement

Log in

Gut microbiota and neonatal acute kidney injury biomarkers

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut–kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut–kidney axis of neonatal AKI, this review is based on the gut–kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

Abbreviations

AKI:

Acute kidney injury

nAKI:

Neonatal AKI

sCr:

Serum creatinine

UOP:

Urine output

AKIN:

Acute kidney injury network

RIFLE:

Risk–injury–failure–loss of function–end-stage kidney disease

KDIGO:

Kidney diseases: improving global outcomes

GFR:

Glomerular filtration rate

Th:

T helper

SCFAs:

Short-chain fatty acids

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

IL:

Interleukin

MCP-1:

Monocyte chemoattractant protein-1

ROS:

Reactive oxygen species

TMAO:

Trimethylamine-N-oxide

IS:

Indole sulfate

PCS:

P-cresol sulfate

LPS:

Lipopolysaccharide

PI3K:

Phosphatidylinositol-3-kinase

AKT:

Protein kinase B

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLRP:

Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing

MAPK:

Mitogen-activated protein kinase

TGF:

Transforming growth factor

NOX:

NADPH oxidase

PERK:

Protein kinase R-like endoplasmic reticulum kinase

ERK:

Extracellular signal-regulated kinase

AhR:

Aryl hydrocarbon receptor

CKD:

Chronic kidney disease

HAVCR1:

Hepatitis A virus cellular receptor 1

GPRs:

G protein–coupled receptors

HDACs:

Histone deacetylases

DCs:

Dendritic cells

NGAL:

Neutrophil gelatinase–associated lipocalin

LCN-2:

Lipocalin-2

uNGAL:

Urinary NGAL

STAT3:

Signal transducer and activator of transcription 3

CysC:

Cystatin C

KIM-1:

Kidney injury molecule 1

OPN:

Osteopontin

FGF23:

Fibroblast growth factor 23

EGF:

Epidermal growth factor

EGFR:

EGF receptors

CCL2:

C-C motif chemokine ligand 2

JAM:

Junctional adhesion molecules

MLCK:

Myosin light chain kinase

NLR:

Nod-like receptor

PKC:

Protein kinase C

Tregs:

Regulatory T cells

VLBW:

Very low birth weight

Nrf2:

Nuclear factor erythroid 2–related factor 2

References

  1. Pantoja-Gómez OC, Realpe S, Cabra-Bautista G, Restrepo JM, Prado OL, Velasco AM, Martínez GE, Leal S, Vallejo A, Calvache JA (2022) Clinical course of neonatal acute kidney injury: multi-center prospective cohort study. BMC Pediatr 22:136

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, Chishti AS, Woroniecki R, Mammen C, Swanson JR, Sridhar S, Wong CS, Kupferman JC, Griffin RL, Askenazi DJ (2017) Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gallo D, de Bijl-Marcus KA, Alderliesten T, Lilien M, Groenendaal F (2021) Early acute kidney injury in preterm and term neonates: incidence, outcome, and associated clinical features. Neonatology 118:174–179

    Article  PubMed  Google Scholar 

  4. Gohiya P, Nadkarni J, Mishra M (2022) Study of neonatal acute kidney injury based on KDIGO criteria. Pediatr Neonatol 63:66–70

    Article  PubMed  Google Scholar 

  5. Starr MC, Kula A, Lieberman J, Menon S, Perkins AJ, Lam T, Chabra S, Hingorani S (2020) The impact of increased awareness of acute kidney injury in the neonatal intensive care unit on acute kidney injury incidence and reporting: results of a retrospective cohort study. J Perinatol 40:1301–1307

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shalaby MA, Sawan ZA, Nawawi E, Alsaedi S, Al-Wassia H, Kari JA (2018) Incidence, risk factors, and outcome of neonatal acute kidney injury: a prospective cohort study. Pediatr Nephrol 33:1617–1624

    Article  PubMed  Google Scholar 

  7. Cleto-Yamane TL, Gomes CLR, Suassuna JHR, Nogueira PK (2019) Acute kidney injury epidemiology in pediatrics. J Bras Nefrol 41:275–283

    Article  PubMed  Google Scholar 

  8. Ricci Z, Ronco C (2013) Neonatal RIFLE. Nephrol Dial Transplant 28:2211–2214

    Article  PubMed  Google Scholar 

  9. Starr MC, Charlton JR, Guillet R, Reidy K, Tipple TE, Jetton JG, Kent AL, Abitbol CL, Ambalavanan N, Mhanna MJ, Askenazi DJ, Selewski DT, Harer MW (2021) Advances in neonatal acute kidney injury. Pediatrics 148:e2021051220

    Article  PubMed  Google Scholar 

  10. Ramírez M, Chakravarti S, Busovsky-McNeal M, McKinstry J, Al-Qaqaa Y, Sahulee R, Kumar TKS, Li X, Goldberg JD, Gefen AM, Malaga-Dieguez L (2022) Elevated levels of urinary biomarkers TIMP-2 and IGFBP-7 predict acute kidney injury in neonates after congenital heart surgery. J Pediatr Intensive Care 11:153–158

    Article  PubMed  Google Scholar 

  11. El-Sadek AE, El-Gamasy MA, Behiry EG, Torky AA, Fathy MA (2020) Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates. J Pediatr Urol 16:206.e201-206.e208

    Article  Google Scholar 

  12. Hidayati EL, Utami MD, Rohsiswatmo R, Tridjaja B (2021) Cystatin C compared to serum creatinine as a marker of acute kidney injury in critically ill neonates. Pediatr Nephrol 36:181–186

    Article  PubMed  Google Scholar 

  13. Starr MC, Menon S (2021) Neonatal acute kidney injury: a case-based approach. Pediatr Nephrol 36:3607–3619

    Article  PubMed  Google Scholar 

  14. Corrêa LP, Gatto FR, Bressani GYS, Lanza K, Simões ESAC (2022) Nephrogenesis, renal function, and biomarkers in preterm newborns. Curr Med Chem 29:4097–4112

    Article  PubMed  Google Scholar 

  15. Adak A, Khan MR (2019) An insight into gut microbiota and its functionalities. Cell Mol Life Sci 76:473–493

    Article  CAS  PubMed  Google Scholar 

  16. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113:2019–2040

    Article  PubMed  Google Scholar 

  17. Zhao J, Zhang X, Liu H, Brown MA, Qiao S (2019) Dietary protein and gut microbiota composition and function. Curr Protein Pept Sci 20:145–154

    Article  CAS  PubMed  Google Scholar 

  18. Shi N, Li N, Duan X, Niu H (2017) Interaction between the gut microbiome and mucosal immune system. Mil Med Res 4:14

    PubMed  PubMed Central  Google Scholar 

  19. Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL (2022) Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 157:170865

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K (2021) Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 12:2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen G, Wu J, Ye BC, Qi N (2021) Gut microbiota-derived metabolites in the development of diseases. Can J Infect Dis Med Microbiol 2021:6658674

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakade Y, Iwata Y, Furuichi K, Mita M, Hamase K, Konno R, Miyake T, Sakai N, Kitajima S, Toyama T, Shinozaki Y, Sagara A, Miyagawa T, Hara A, Shimizu M, Kamikawa Y, Sato K, Oshima M, Yoneda-Nakagawa S, Yamamura Y, Kaneko S, Miyamoto T, Katane M, Homma H, Morita H, Suda W, Hattori M, Wada T (2018) Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3:e97957

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Kim CJ, Go YS, Lee HY, Kim MG, Oh SW, Cho WY, Im SH, Jo SK (2020) Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int 98:932–946

    Article  CAS  PubMed  Google Scholar 

  24. Chou YT, Kan WC, Shiao CC (2022) Acute kidney injury and gut dysbiosis: a narrative review focus on pathophysiology and treatment. Int J Mol Sci 23:3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morello W, D’Amico F, Serafinelli J, Turroni S, Abati I, Fiori J, Baskin E, Yalcinkaya F, Jankauskiene A, Pennesi M, Zurowska A, Becherucci F, Drozdz D, Mekahli D, Krzemien G, La Scola C, Taranta-Janusz K, Mehls O, Schaefer F, Candela M, Montini G (2021) Low-dose antibiotic prophylaxis induces rapid modifications of the gut microbiota in infants with vesicoureteral reflux. Front Pediatr 9:674716

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrianova NV, Popkov VA, Klimenko NS, Tyakht AV, Baydakova GV, Frolova OY, Zorova LD, Pevzner IB, Zorov DB, Plotnikov EY (2020) Microbiome-metabolome signature of acute kidney injury. Metabolites 10:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Ji GE, Park MS, Seong YJ, Go YS, Lee HY, Fang Y, Kim MG, Oh SW, Cho WY, Jo SK (2021) Probiotics partially attenuate the severity of acute kidney injury through an immunomodulatory effect. Kidney Res Clin Pract 40:620–633

    Article  PubMed  PubMed Central  Google Scholar 

  28. Emal D, Rampanelli E, Stroo I, Butter LM, Teske GJ, Claessen N, Stokman G, Florquin S, Leemans JC, Dessing MC (2017) Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 28:1450–1461

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Moturi KR, Wang L, Zhang K, Yu C (2019) Gut derived-endotoxin contributes to inflammation in severe ischemic acute kidney injury. BMC Nephrol 20:16

    Article  PubMed  PubMed Central  Google Scholar 

  30. Giordano L, Mihaila SM, Eslami Amirabadi H, Masereeuw R (2021) Microphysiological systems to recapitulate the gut-kidney axis. Trends Biotechnol 39:811–823

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, Kaczor-Urbanowicz KE, Magyar C, Guo F, Wang Z, Pellegrini M, Hazen SL, Nicholas SB, Lusis AJ, Shih DM (2021) Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep 11:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kyaw TS, Sukmak M, Nahok K, Sharma A, Silsirivanit A, Lert-Itthiporn W, Sansurin N, Senthong V, Anutrakulchai S, Sangkhamanon S, Pinlaor S, Selmi C, Hammock BD, Cha’on U (2022) Monosodium glutamate consumption reduces the renal excretion of trimethylamine N-oxide and the abundance of Akkermansia muciniphila in the gut. Biochem Biophys Res Commun 630:158–166

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Xiao C, Liu C, Li J, Fang F, Lu X, Zhang C, Xu F (2020) Identification of biomarkers of sepsis-associated acute kidney injury in pediatric patients based on UPLC-QTOF/MS. Inflammation 43:629–640

    Article  PubMed  Google Scholar 

  34. Shi HH, Chen LP, Wang CC, Zhao YC, Wang YM, Xue CH, Zhang TT (2022) Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide-and trimethylamine-N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice. Food Funct 13:6103–6117

    Article  CAS  PubMed  Google Scholar 

  35. Xie Y, Hu X, Li S, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J (2022) Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice. Pharmacol Res 178:106161

    Article  CAS  PubMed  Google Scholar 

  36. Fang Q, Zheng B, Liu N, Liu J, Liu W, Huang X, Zeng X, Chen L, Li Z, Ouyang D (2021) Trimethylamine N-oxide exacerbates renal inflammation and fibrosis in rats with diabetic kidney disease. Front Physiol 12:682482

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lai Y, Tang H, Zhang X, Zhou Z, Zhou M, Hu Z, Zhu F, Zhang L, Nie J (2022) Trimethylamine-N-oxide aggravates kidney injury via activation of p38/MAPK signaling and upregulation of HuR. Kidney Blood Press Res 47:61–71

    Article  CAS  PubMed  Google Scholar 

  38. Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, Liu L, Patzak A, Persson PB, Gao F, Lai EY, Zhao L (2022) Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med 179:288–300

    Article  CAS  PubMed  Google Scholar 

  39. Kapetanaki S, Kumawat AK, Persson K, Demirel I (2021) The fibrotic effects of TMAO on human renal fibroblasts is mediated by NLRP3, caspase-1 and the PERK/Akt/mTOR pathway. Int J Mol Sci 22:11864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou X, Zhang B, Zhao X, Lin Y, Zhuang Y, Guo J, Wang S (2022) Chlorogenic acid prevents hyperuricemia nephropathy via regulating TMAO-related gut microbes and inhibiting the PI3K/AKT/mTOR Pathway. J Agric Food Chem 70:10182–10193

    Article  CAS  PubMed  Google Scholar 

  41. Noce A, Marchetti M, Marrone G, Di Renzo L, Di Lauro M, Di Daniele F, Albanese M, Di Daniele N, De Lorenzo A (2022) Link between gut microbiota dysbiosis and chronic kidney disease. Eur Rev Med Pharmacol Sci 26:2057–2074

    CAS  PubMed  Google Scholar 

  42. Wang W, Hao G, Pan Y, Ma S, Yang T, Shi P, Zhu Q, Xie Y, Ma S, Zhang Q, Ruan H, Ding F (2019) Serum indoxyl sulfate is associated with mortality in hospital-acquired acute kidney injury: a prospective cohort study. BMC Nephrol 20:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Veldeman L, Vanmassenhove J, Van Biesen W, Massy ZA, Liabeuf S, Glorieux G, Vanholder R (2019) Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury. Int Urol Nephrol 51:293–302

    Article  CAS  PubMed  Google Scholar 

  44. Lv J, Chen J, Wang M, Yan F (2020) Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization. Aging 12:9139–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yabuuchi N, Hou H, Gunda N, Narita Y, Jono H, Saito H (2021) Suppressed hepatic production of indoxyl sulfate attenuates cisplatin-induced acute kidney injury in sulfotransferase 1a1-deficient mice. Int J Mol Sci 22:1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen JH, Chao CT, Huang JW, Hung KY, Liu SH, Tarng DC, Chiang CK (2021) Early elimination of uremic toxin ameliorates AKI-to-CKD transition. Clin Sci 135:2643–2658

    Article  CAS  Google Scholar 

  47. Lee TH, Park D, Kim YJ, Lee I, Kim S, Oh CT, Kim JY, Yang J, Jo SK (2020) Lactobacillus salivarius BP121 prevents cisplatin-induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis. Int J Mol Med 45:1130–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen WC, Chou YH, Shi LS, Chen ZW, Tu HJ, Lin XY, Wang GJ (2021) AST-120 improves cardiac dysfunction in acute kidney injury mice via suppression of apoptosis and proinflammatory NF-κB/ICAM-1 signaling. J Inflamm Res 14:505–518

    Article  PubMed  PubMed Central  Google Scholar 

  49. Matsumoto M, Kunisawa A, Hattori T, Kawana S, Kitada Y, Tamada H, Kawano S, Hayakawa Y, Iida J, Fukusaki E (2018) Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci Rep 8:17915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwata Y, Nakade Y, Kitajima S, Yoneda-Nakagawa S, Oshima M, Sakai N, Ogura H, Sato K, Toyama T, Yamamura Y, Miyagawa T, Yamazaki H, Hara A, Shimizu M, Furuichi K, Mita M, Hamase K, Tanaka T, Nishida M, Muramatsu W, Yamamoto H, Shichino S, Ueha S, Matsushima K, Wada T (2022) Protective effect of d-alanine against acute kidney injury. Am J Physiol Renal Physiol 322:F667–F679

    Article  CAS  PubMed  Google Scholar 

  51. Okada A, Nangaku M, Jao TM, Maekawa H, Ishimono Y, Kawakami T, Inagi R (2017) D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation. Sci Rep 7:11168

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tseng YS, Liao CH, Wu WB, Ma MC (2021) N-methyl-d-aspartate receptor hyperfunction contributes to d-serine-mediated renal insufficiency. Am J Physiol Renal Physiol 320:F799–F813

    Article  CAS  PubMed  Google Scholar 

  53. Huang W, Zhou L, Guo H, Xu Y, Xu Y (2017) The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metab Clin Exper 68:20–30

    Article  CAS  Google Scholar 

  54. Knauf F, Brewer JR, Flavell RA (2019) Immunity, microbiota and kidney disease. Nat Rev Nephrol 15:263–274

    Article  PubMed  Google Scholar 

  55. Sun Y, Zhou C, Chen Y, He X, Gao F, Xue D (2022) Quantitative increase in short-chain fatty acids, especially butyrate protects kidney from ischemia/reperfusion injury. J Investig Med 70:29–35

    Article  PubMed  Google Scholar 

  56. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira PM, Hiyane MI, Rodas AC, Peron JP, Aguiar CF, Reis MA, Ribeiro WR, Valduga CJ, Curi R, Vinolo MA, Ferreira CM, Câmara NO (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26:1877–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Harbi NO, Nadeem A, Ahmad SF, Alotaibi MR, AlAsmari AF, Alanazi WA, Al-Harbi MM, El-Sherbeeny AM, Ibrahim KE (2018) Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol 58:24–31

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Li YJ, Loh YW, Singer J, Zhu W, Macia L, Mackay CR, Wang W, Chadban SJ, Wu H (2021) Fiber derived microbial metabolites prevent acute kidney injury through G-protein coupled receptors and HDAC inhibition. Front Cell Dev Biol 9:648639

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zou YT, Zhou J, Zhu JH, Wu CY, Shen H, Zhang W, Zhou SS, Xu JD, Mao Q, Zhang YQ, Long F, Li SL (2022) Gut microbiota mediates the protective effects of traditional chinese medicine formula Qiong-Yu-Gao against cisplatin-induced acute kidney injury. Microbiol Spectr 10:e0075922

    Article  PubMed  Google Scholar 

  60. Rumpel J, Spray BJ, Chock VY, Kirkley MJ, Slagle CL, Frymoyer A, Cho SH, Gist KM, Blaszak R, Poindexter B, Courtney SE (2022) Urine biomarkers for the assessment of acute kidney injury in neonates with hypoxic ischemic encephalopathy receiving therapeutic hypothermia. J Pediatr 241:133-140.e133

    Article  CAS  PubMed  Google Scholar 

  61. Askenazi DJ, Halloran BA, Heagerty PJ, Schmicker RH, Juul SE, Hingorani S, Goldstein SL (2022) Urine acute kidney injury biomarkers in extremely low gestational age neonates: a nested case control study of 21 candidate urine biomarkers. Pediatr Nephrol 38:1329–1342

    Article  PubMed  Google Scholar 

  62. Jalali SZ, Enteshari M, Saadat F (2022) Reciprocal assessment of urinary beta-2-microglobulin and BUN levels in renal dysfunction of neonates with birth asphyxia. J Matern Fetal Neonatal Med 35:6624–6630

    Article  CAS  PubMed  Google Scholar 

  63. Abdullah KP, Yachha M, Srivastava G, Pillai A, Pandita A (2022) Urinary beta-2 microglobulin as an early predictive biomarker of acute kidney injury in neonates with perinatal asphyxia. Eur J Pediatr 181:281–286

    Article  CAS  PubMed  Google Scholar 

  64. Uygur Ö, Altun Köroğlu Ö, Levent RE, Sözmen E, Ergin F, Atay Y, Yalaz M, Akisü M, Kültürsay N (2021) Can urinary biomarkers predict acute kidney injury in newborns with critical congenital heart disease? Turk J Med Sci 51:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sridharan K, Al Jufairi M, Al Segai O, Al Ansari E, Hashem Ahmed H, Husain Shaban G, Malalla Z, Al Marzooq R, Al Madhoob A, Saeed Tabbara K (2021) Biomarkers in neonates receiving potential nephrotoxic drugs. Eur Rev Med Pharmacol Sci 25:7078–7088

    CAS  PubMed  Google Scholar 

  66. Borchert E, de la Fuente R, Guzmán AM, González K, Rolle A, Morales K, González R, Jalil R, Lema G (2021) Biomarkers as predictors of renal damage in neonates undergoing cardiac surgery. Perfusion 36:825–831

    Article  PubMed  Google Scholar 

  67. Slagle CL, Goldstein SL, Gavigan HW, Rowe JA, Krallman KA, Kaplan HC, Liu C, Ehrlich SR, Kotagal M, Bondoc AJ, Poindexter BB (2021) Association between elevated urine neutrophil gelatinase-associated lipocalin and postoperative acute kidney injury in neonates. J Pediatr 238:193-201.e192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bojan M, Pieroni L, Semeraro M, Froissart M (2020) Cell-cycle arrest biomarkers: usefulness for cardiac surgery-related acute kidney injury in neonates and infants. Pediatr Crit Care Med 21:563–570

    Article  PubMed  Google Scholar 

  69. Chen J, Sun Y, Wang S, Dai X, Huang H, Bai Z, Li X, Wang J, Li Y (2020) The effectiveness of urinary TIMP-2 and IGFBP-7 in predicting acute kidney injury in critically ill neonates. Pediatr Res 87:1052–1059

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Zhang B, Wang D, Shi W, Zheng A (2020) Evaluation of novel biomarkers for early diagnosis of acute kidney injury in asphyxiated full-term newborns: a case-control study. Med Princ Pract 29:285–291

    Article  PubMed  Google Scholar 

  71. Brennan KG, Parravicini E, Lorenz JM, Bateman DA (2020) Patterns of urinary neutrophil gelatinase-associated lipocalin and acute kidney injury in neonates receiving cardiopulmonary bypass. Children (Basel) 7:132

    PubMed  Google Scholar 

  72. ElSadek AE, El Gafar EA, Behiry EG, Nazem SA, Abdel Haie OM (2020) Kidney injury molecule-1/creatinine as a urinary biomarker of acute kidney injury in critically ill neonates. J Pediatr Urol 16:688.e681-688.e689

    Article  Google Scholar 

  73. Unal ET, Ozer EA, Kahramaner Z, Erdemir A, Cosar H, Sutcuoglu S (2020) Value of urinary kidney injury molecule-1 levels in predicting acute kidney injury in very low birth weight preterm infants. J Int Med Res 48:300060520977442

    Article  CAS  PubMed  Google Scholar 

  74. Chen J, Li G, Wang S, Hu X, Sun Y, Dai X, Bai Z, Pan J, Li X, Wang J, Li Y (2019) Urinary nephrin as a biomarker of glomerular maturation and injury is associated with acute kidney injury and mortality in critically ill neonates. Neonatology 116:58–66

    Article  CAS  PubMed  Google Scholar 

  75. Adams PS, Vargas D, Baust T, Saenz L, Koh W, Blasiole B, Callahan PM, Phadke AS, Nguyen KN, Domnina Y, Sharma M, Kellum JA, Sanchez-de-Toledo J (2019) Associations of perioperative renal oximetry via near-infrared spectroscopy, urinary biomarkers, and postoperative acute kidney injury in infants after congenital heart surgery: should creatinine continue to be the gold standard? Pediatr Crit Care Med 20:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  76. Waldherr S, Fichtner A, Beedgen B, Bruckner T, Schaefer F, Tönshoff B, Pöschl J, Westhoff TH, Westhoff JH (2019) Urinary acute kidney injury biomarkers in very low-birth-weight infants on indomethacin for patent ductus arteriosus. Pediatr Res 85:678–686

    Article  CAS  PubMed  Google Scholar 

  77. Schroeder LW, Buckley JR, Stroud RE, Martin RH, Nadeau EK, Barrs R, Graham EM (2019) Plasma neutrophil gelatinase-associated lipocalin is associated with acute kidney injury and clinical outcomes in neonates undergoing cardiopulmonary bypass. Pediatr Crit Care Med 20:957–962

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stojanović VD, Barišić NA, Radovanović TD, Kovač NB, Djuran JD, Antić APE, Doronjski AD (2018) Serum glutathione S-transferase Pi as predictor of the outcome and acute kidney injury in premature newborns. Pediatr Nephrol 33:1251–1256

    Article  PubMed  Google Scholar 

  79. Reiter K, Balling G, Bonelli V, Pabst von Ohain J, Braun SL, Ewert P, Ruf B (2018) Neutrophil gelatinase-associated lipocalin reflects inflammation and is not a reliable renal biomarker in neonates and infants after cardiopulmonary bypass: a prospective case-control study. Cardiol Young 28:243–251

    Article  PubMed  Google Scholar 

  80. El-Gammacy TM, Shinkar DM, Mohamed NR, Al-Halag AR (2018) Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome. Scand J Clin Lab Invest 78:352–357

    Article  CAS  PubMed  Google Scholar 

  81. Fang F, Hu X, Dai X, Wang S, Bai Z, Chen J, Pan J, Li X, Wang J, Li Y (2018) Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit Care (London) 22:256

    Article  Google Scholar 

  82. Khosravi N, Zadkarami M, Chobdar F, Hoseini R, Khalesi N, Panahi P, Karimi A (2018) The value of urinary cystatin C level to predict neonatal kidney injury. Curr Pharm Des 24:3002–3004

    Article  CAS  PubMed  Google Scholar 

  83. Elmas AT, Karadag A, Tabel Y, Ozdemir R, Otlu G (2017) Analysis of urine biomarkers for early determination of acute kidney injury in non-septic and non-asphyxiated critically ill preterm neonates. J Matern Fetal Neonatal Med 30:302–308

    Article  CAS  PubMed  Google Scholar 

  84. Baumert M, Surmiak P, Więcek A, Walencka Z (2017) Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates. Clin Exper Nephrol 21:658–664

    Article  CAS  Google Scholar 

  85. Abdelaal NA, Shalaby SA, Khashana AK, Abdelwahab AM (2017) Serum cystatin C as an earlier predictor of acute kidney injury than serum creatinine in preterm neonates with respiratory distress syndrome. Saudi J Kidney Dis Transpl 28:1003–1014

    Article  PubMed  Google Scholar 

  86. Jaberi SA, Cohen A, D’Souza C, Abdulrazzaq YM, Ojha S, Bastaki S, Adeghate EA (2021) Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother 142:112002

    Article  CAS  PubMed  Google Scholar 

  87. Bellos I, Fitrou G, Daskalakis G, Perrea DN, Pergialiotis V (2018) Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr 177:1425–1434

    Article  CAS  PubMed  Google Scholar 

  88. Shaffer CL (2022) The use of renal biomarkers in pediatric cardiac patients with acute kidney injury. J Pediatr Pharmacol Ther 27:506–516

    PubMed  PubMed Central  Google Scholar 

  89. Kuo J, Akison LK, Chatfield MD, Trnka P, Moritz KM (2022) Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy. J Nephrol 35:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kisiel A, Roszkowska-Blaim M, Pańczyk-Tomaszewska M, Stelmaszczyk-Emmel A, Górska E, Borszewska-Kornacka M (2017) Effect of perinatal risk factors on neutrophil gelatinase-associated lipocalin (NGAL) level in umbilical and peripheral blood in neonates. Cent Eur J Immunol 42:274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang H, Su M, Yang B, Ren Y, Li L, Zhao D, Huang D, Gao X (2021) The influence of hyperbilirubinemia on indexes of kidney function in neonates. Pediatr Nephrol 36:3711–3716

    Article  PubMed  Google Scholar 

  92. Capelli I, Vitali F, Zappulo F, Martini S, Donadei C, Cappuccilli M, Leonardi L, Girardi A, Aiello V, Galletti S, Faldella G, Poluzzi E, De Ponti F, Gaetano M (2020) Biomarkers of kidney injury in very-low-birth-weight preterm infants: influence of maternal and neonatal factors. In Vivo 34:1333–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ, Hackl H, Pfister A, Schilling J, Moser PL, Kempster SL, Swidsinski A, Orth Höller D, Weiss G, Baines JF, Kaser A, Tilg H (2016) Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19:455–469

    Article  CAS  PubMed  Google Scholar 

  94. Qiu X, Chen C, Chen X (2021) Lipocalin 2 deficiency restrains aging-related reshaping of gut microbiota structure and metabolism. Biomolecules 11:1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qiu X, Macchietto MG, Liu X, Lu Y, Ma Y, Guo H, Saqui-Salces M, Bernlohr DA, Chen C, Shen S, Chen X (2021) Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. Int J Obes (London) 45:143–154

    Article  CAS  Google Scholar 

  96. Mori K, Suzuki T, Minamishima S, Igarashi T, Inoue K, Nishimura D, Seki H, Yamada T, Kosugi S, Katori N, Hashiguchi S, Morisaki H (2016) Neutrophil gelatinase-associated lipocalin regulates gut microbiota of mice. J Gastroenterol Hepatol 31:145–154

    Article  CAS  PubMed  Google Scholar 

  97. Klüber P, Meurer SK, Lambertz J, Schwarz R, Zechel-Gran S, Braunschweig T, Hurka S, Domann E, Weiskirchen R (2021) Depletion of lipocalin 2 (LCN2) in mice leads to dysbiosis and persistent colonization with segmented filamentous bacteria. Int J Mol Sci 22:13156

    Article  PubMed  PubMed Central  Google Scholar 

  98. Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S (2021) Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 17:e1009487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh V, Galla S, Golonka RM, Patterson AD, Chassaing B, Joe B, Vijay-Kumar M (2020) Lipocalin 2 deficiency-induced gut microbiota dysbiosis evokes metabolic syndrome in aged mice. Physiol Genomics 52:314–321

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yang H, Lin C, Zhuang C, Chen J, Jia Y, Shi H, Zhuang C (2022) Serum Cystatin C as a predictor of acute kidney injury in neonates: a meta-analysis. J Pediatr (Rio J) 98:230–240

    Article  PubMed  Google Scholar 

  101. Jiang S, Xie S, Lv D, Wang P, He H, Zhang T, Zhou Y, Lin Q, Zhou H, Jiang J, Nie J, Hou F, Chen Y (2017) Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep 7:2870

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455

    Article  CAS  PubMed  Google Scholar 

  103. Steimle A, Gronbach K, Beifuss B, Schäfer A, Harmening R, Bender A, Maerz JK, Lange A, Michaelis L, Maurer A, Menz S, McCoy K, Autenrieth IB, Kalbacher H, Frick JS (2016) Symbiotic gut commensal bacteria act as host cathepsin S activity regulators. J Autoimmun 75:82–95

    Article  CAS  PubMed  Google Scholar 

  104. Geng J, Qiu Y, Qin Z, Su B (2021) The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med 19:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rogulska K, Wojciechowska-Koszko I, Dołęgowska B, Kwiatkowska E, Roszkowska P, Kapczuk P, Kosik-Bogacka D (2022) The most promising biomarkers of allogeneic kidney transplant rejection. J Immunol Res 2022:6572338

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, Lacatusu CM, Maranduca MA, Floria M, Rezus C (2019) The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci 20:5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Westhoff JH, Seibert FS, Waldherr S, Bauer F, Tönshoff B, Fichtner A, Westhoff TH (2017) Urinary calprotectin, kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin for the prediction of adverse outcome in pediatric acute kidney injury. Eur J Pediatr 176:745–755

    Article  CAS  PubMed  Google Scholar 

  108. Chakraborty S, Mandal J, Cheng X, Galla S, Hindupur A, Saha P, Yeoh BS, Mell B, Yeo JY, Vijay-Kumar M, Yang T, Joe B (2020) Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt-sensitive hypertension and renal damage. Hypertension 76:59–72

    Article  CAS  PubMed  Google Scholar 

  109. Sun G, Yin Z, Liu N, Bian X, Yu R, Su X, Zhang B, Wang Y (2017) Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 493:964–970

    Article  CAS  PubMed  Google Scholar 

  110. Snelson M, Clarke RE, Nguyen TV, Penfold SA, Forbes JM, Tan SM, Coughlan MT (2021) Long term high protein diet feeding alters the microbiome and increases intestinal permeability, systemic inflammation and kidney injury in mice. Mol Nutr Food Res 65:e2000851

    Article  PubMed  Google Scholar 

  111. Pongking T, Haonon O, Dangtakot R, Onsurathum S, Jusakul A, Intuyod K, Sangka A, Anutrakulchai S, Cha’on U, Pinlaor S, Pinlaor P (2020) A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. PLoS One 15:e0231237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hsiao YP, Chen HL, Tsai JN, Lin MY, Liao JW, Wei MS, Ko JL, Ou CC (2021) Administration of Lactobacillus reuteri combined with Clostridium butyricum attenuates cisplatin-induced renal damage by gut microbiota reconstitution, increasing butyric acid production, and suppressing renal inflammation. Nutrients 13:2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou R, Wen W, Gong X, Zhao Y, Zhang W (2022) Nephro-protective effect of Daphnetin in hyperoxaluria-induced rat renal injury via alterations of the gut microbiota. J Food Biochem 46:e14377

    Article  CAS  PubMed  Google Scholar 

  114. Linh HT, Iwata Y, Senda Y, Sakai-Takemori Y, Nakade Y, Oshima M, Nakagawa-Yoneda S, Ogura H, Sato K, Minami T, Kitajima S, Toyama T, Yamamura Y, Miyagawa T, Hara A, Shimizu M, Furuichi K, Sakai N, Yamada H, Asanuma K, Matsushima K, Wada T (2022) Intestinal bacterial translocation contributes to diabetic kidney disease. J Am Soc Nephrol 33:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaleta B (2019) The role of osteopontin in kidney diseases. Inflamm Res 68:93–102

    Article  CAS  PubMed  Google Scholar 

  116. Cen C, Aziz M, Yang WL, Nicastro JM, Coppa GF, Wang P (2017) Osteopontin blockade attenuates renal injury after ischemia reperfusion by inhibiting NK cell infiltration. Shock 47:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Khamissi FZ, Ning L, Kefaloyianni E, Dun H, Arthanarisami A, Keller A, Atkinson JJ, Li W, Wong B, Dietmann S, Lavine K, Kreisel D, Herrlich A (2022) Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure. Sci Adv 8:eabm5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chagan-Yasutan H, Hanan F, Niki T, Bai G, Ashino Y, Egawa S, Telan EFO, Hattori T (2020) Plasma osteopontin levels is associated with biochemical markers of kidney injury in patients with leptospirosis. Diagnostics (Basel) 10:439

    Article  CAS  PubMed  Google Scholar 

  119. Beitland S, Nakstad ER, Berg JP, Trøseid AS, Brusletto BS, Brunborg C, Lundqvist C, Sunde K (2019) Urine β-2-microglobulin, osteopontin, and trefoil factor 3 may early predict acute kidney injury and outcome after cardiac arrest. Crit Care Res Pract 2019:4384796

    PubMed  PubMed Central  Google Scholar 

  120. Varalakshmi B, Kiranmyai VS, Aparna B, Ram R, Rao P, Kumar VS (2020) Plasma osteopontin levels in patients with acute kidney injury requiring dialysis: a study in a tertiary care institute in South India. Int Urol Nephrol 52:917–921

    Article  CAS  PubMed  Google Scholar 

  121. Askenazi DJ, Koralkar R, Patil N, Halloran B, Ambalavanan N, Griffin R (2016) Acute kidney injury urine biomarkers in very low-birth-weight infants. Clin J Am Soc Nephrol 11:1527–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ren S, Hui Y, Goericke-Pesch S, Pankratova S, Kot W, Pan X, Thymann T, Sangild PT, Nguyen DN (2019) Gut and immune effects of bioactive milk factors in preterm pigs exposed to prenatal inflammation. Am J Physiol Gastrointest Liver Physiol 317:G67–G77

    Article  CAS  PubMed  Google Scholar 

  123. Ito K, Nakajima A, Fukushima Y, Suzuki K, Sakamoto K, Hamazaki Y, Ogasawara K, Minato N, Hattori M (2017) The potential role of Osteopontin in the maintenance of commensal bacteria homeostasis in the intestine. PLoS One 12:e0173629

    Article  PubMed  PubMed Central  Google Scholar 

  124. Das S, Song Z, Han H, Ge X, Desert R, Athavale D, Babu Komakula SS, Magdaleno F, Chen W, Lantvit D, Guzman G, Nieto N (2022) Intestinal osteopontin protects from alcohol-induced liver injury by preserving the gut microbiome and the intestinal barrier function. Cell Mol Gastroenterol Hepatol 14:813–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aggarwal N, Deerhake ME, DiPalma D, Shahi SK, Gaggioli MR, Mangalam AK, Shinohara ML (2021) Secreted osteopontin from CD4(+) T cells limits acute graft-versus-host disease. Cell Rep 37:110170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Toyonaga T, Nakase H, Ueno S, Matsuura M, Yoshino T, Honzawa Y, Itou A, Namba K, Minami N, Yamada S, Koshikawa Y, Uede T, Chiba T, Okazaki K (2015) Osteopontin deficiency accelerates spontaneous colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PLoS One 10:e0135552

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fatkhullina AR, Peshkova IO, Dzutsev A, Aghayev T, McCulloch JA, Thovarai V, Badger JH, Vats R, Sundd P, Tang HY, Kossenkov AV, Hazen SL, Trinchieri G, Grivennikov SI, Koltsova EK (2018) An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49:943-957.e949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shi X, Wu H, Liu Y, Huang H, Liu L, Yang Y, Jiang T, Zhou M, Dai M (2022) Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide: a novel mechanism for paeonol in atherosclerosis treatment. Front Pharmacol 13:936677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Volovelsky O, Terrell TC, Swain H, Bennett MR, Cooper DS, Goldstein SL (2018) Pre-operative level of FGF23 predicts severe acute kidney injury after heart surgery in children. Pediatr Nephrol 33:2363–2370

    Article  PubMed  Google Scholar 

  130. Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE, Goltzman D, Pajevic PD, Wolf M, Jüppner H (2013) Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int 84:776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hanudel MR, Wesseling-Perry K, Gales B, Ramos G, Campbell V, Ethridge K, Scotti M, Elashoff DA, Alejos J, Reemtsen B, Salusky IB (2016) Effects of acute kidney injury and chronic hypoxemia on fibroblast growth factor 23 levels in pediatric cardiac surgery patients. Pediatr Nephrol 31:661–669

    Article  PubMed  Google Scholar 

  132. Volovelsky O, Gist KM, Terrell TC, Bennett MR, Cooper DS, Alten JA, Goldstein SL (2018) Early postoperative measurement of fibroblast growth factor 23 predicts severe acute kidney injury in infants after cardiac surgery. Clin Nephrol 90:165–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hanudel MR, Zinter MS, Chen L, Gala K, Lim M, Guglielmo M, Deshmukh T, Vangala S, Matthay M, Sapru A (2019) Plasma total fibroblast growth factor 23 levels are associated with acute kidney injury and mortality in children with acute respiratory distress syndrome. PLoS One 14:e0222065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ye G, Yang W, Bi Z, Huang L, Liu F (2021) Effects of a high-phosphorus diet on the gut microbiota in CKD rats. Ren Fail 43:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang JY, Niu C, Zhang Q, Wang MJ, Ni L, Liu JF, Rong XY, Zhao C, Chen J (2021) Full-scale clinical data and reshaped intestinal microbiome on a short-term low-phosphorus diet among healthy adults. J Ren Nutr 31:448–458

    Article  CAS  PubMed  Google Scholar 

  136. Bora SA, Kennett MJ, Smith PB, Patterson AD, Cantorna MT (2018) The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Front Immunol 9:408

    Article  PubMed  PubMed Central  Google Scholar 

  137. Qin Z, Li H, Jiao P, Jiang L, Geng J, Yang Q, Liao R, Su B (2022) The value of urinary interleukin-18 in predicting acute kidney injury: a systematic review and meta-analysis. Ren Fail 44:1717–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cavalcante C, Cavalcante MB, Castello Branco KMP, Chan T, Maia ICL, Pompeu RG, de Oliveira Telles AC, Brito AKM, Libório AB (2022) Biomarkers of acute kidney injury in pediatric cardiac surgery. Pediatr Nephrol 37:61–78

    Article  PubMed  Google Scholar 

  139. Miao N, Yin F, Xie H, Wang Y, Xu Y, Shen Y, Xu D, Yin J, Wang B, Zhou Z, Cheng Q, Chen P, Xue H, Zhou L, Liu J, Wang X, Zhang W, Lu L (2019) The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int 96:1105–1120

    Article  CAS  PubMed  Google Scholar 

  140. Greenberg JH, Zappitelli M, Jia Y, Thiessen-Philbrook HR, de Fontnouvelle CA, Wilson FP, Coca S, Devarajan P, Parikh CR (2018) Biomarkers of AKI progression after pediatric cardiac surgery. J Am Soc Nephrol 29:1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oncel MY, Canpolat FE, Arayici S, Alyamac Dizdar E, Uras N, Oguz SS (2016) Urinary markers of acute kidney injury in newborns with perinatal asphyxia. Ren Fail 38:882–888

    Article  CAS  PubMed  Google Scholar 

  142. Li Y, Fu C, Zhou X, Xiao Z, Zhu X, Jin M, Li X, Feng X (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860

    Article  PubMed  PubMed Central  Google Scholar 

  143. Miklaszewska M, Korohodai P, Kwinta P, Tomasik T, Zachwieja K, Klich B, Tkaczyk M, Droźdź D, Pietrzyk JA (2015) Clinical validity of urinary interleukin 18 and interleukin 6 determinations in preterm newborns. Przegl Lek 72:589–596

    PubMed  Google Scholar 

  144. Li Y, Li X, Zhou X, Yan J, Zhu X, Pan J, Jin M, Zhu X, Feng X, Xiao Z (2013) Impact of sepsis on the urinary level of interleukin-18 and cystatin C in critically ill neonates. Pediatr Nephrol 28:135–144

    Article  PubMed  Google Scholar 

  145. Gao H, Cao M, Yao Y, Hu W, Sun H, Zhang Y, Zeng C, Tang J, Luan S, Chen P (2021) Dysregulated microbiota-driven gasdermin D activation promotes colitis development by mediating IL-18 release. Front Immunol 12:750841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M (2022) Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 13:973224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Castillo-Dela Cruz P, Wanek AG, Kumar P, An X, Elsegeiny W, Horne W, Fitch A, Burr AHP, Gopalakrishna KP, Chen K, Methé BA, Canna SW, Hand TW, Kolls JK (2019) Intestinal IL-17R signaling constrains IL-18-driven liver inflammation by the regulation of microbiome-derived products. Cell Rep 29:2270-2283.e2277

    Article  CAS  PubMed  Google Scholar 

  148. Somm E, Jornayvaz FR (2022) Interleukin-18 in metabolism: from mice physiology to human diseases. Front Endocrinol 13:971745

    Article  Google Scholar 

  149. Leite JA, Pessenda G, Guerra-Gomes IC, de Santana AKM, André Pereira C, Ribeiro Campos Costa F, Ramos SG, Simões Zamboni D, Caetano Faria AM, Candido de Almeida D, Olsen Saraiva Câmara N, Tostes RC, Santana Silva J, Carlos D (2020) The DNA sensor AIM2 protects against streptozotocin-induced type 1 diabetes by regulating intestinal homeostasis via the IL-18 pathway. Cells 9:959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, Bielecki P, Sefik E, Roulis M, Rice T, Sivanathan KN, Zhou T, Solis AG, Honcharova-Biletska H, Vélez K, Hartner S, Low JS, Qu R, de Zoete MR, Palm NW, Ring AM, Weber A, Moor AE, Kluger Y, Nowarski R, Flavell RA (2020) Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity. Cell 180:50-63.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA, Mitchell J, Baxter NT, Zhao L, Schloss PD, Martens EC, Eaton KA, Chen GY (2017) NLRP6 protects Il10(-/-) mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep 19:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tye H, Yu CH, Simms LA, de Zoete MR, Kim ML, Zakrzewski M, Penington JS, Harapas CR, Souza-Fonseca-Guimaraes F, Wockner LF, Preaudet A, Mielke LA, Wilcox SA, Ogura Y, Corr SC, Kanojia K, Kouremenos KA, De Souza DP, McConville MJ, Flavell RA, Gerlic M, Kile BT, Papenfuss AT, Putoczki TL, Radford-Smith GL, Masters SL (2018) NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat Commun 9:3728

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schaeffer C, Devuyst O, Rampoldi L (2021) Uromodulin: roles in health and disease. Ann Rev Physiol 83:477–501

    Article  CAS  Google Scholar 

  154. Bennett MR, Pyles O, Ma Q, Devarajan P (2018) Preoperative levels of urinary uromodulin predict acute kidney injury after pediatric cardiopulmonary bypass surgery. Pediatr Nephrol 33:521–526

    Article  PubMed  Google Scholar 

  155. You R, Zheng H, Xu L, Ma T, Chen G, Xia P, Fan X, Ji P, Wang L, Chen L (2021) Decreased urinary uromodulin is potentially associated with acute kidney injury: a systematic review and meta-analysis. J Intensive Care 9:70

    Article  PubMed  PubMed Central  Google Scholar 

  156. Micanovic R, Khan S, Janosevic D, Lee ME, Hato T, Srour EF, Winfree S, Ghosh J, Tong Y, Rice SE, Dagher PC, Wu XR, El-Achkar TM (2018) Tamm-Horsfall protein regulates mononuclear phagocytes in the kidney. J Am Soc Nephrol 29:841–856

    Article  CAS  PubMed  Google Scholar 

  157. Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, Bhatraju PK, Ikizler TA, Siew ED, Ware LB, Liu KD, Go AS, Kaufman JS, Kimmel PL, Chinchilli VM, Cantley LG, Parikh CR (2021) Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 131:e139927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Weiss GL, Stanisich JJ, Sauer MM, Lin CW, Eras J, Zyla DS, Trück J, Devuyst O, Aebi M, Pilhofer M, Glockshuber R (2020) Architecture and function of human uromodulin filaments in urinary tract infections. Science 369:1005–1010

    Article  CAS  PubMed  Google Scholar 

  159. Yanagihara S, Kanaya T, Fukuda S, Nakato G, Hanazato M, Wu XR, Yamamoto N, Ohno H (2017) Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 29:357–363

    Article  CAS  PubMed  Google Scholar 

  160. Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD (2018) Effect of sweetened dried cranberry consumption on urinary proteome and fecal microbiome in healthy human subjects. OMICS 22:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. LaFavers KA, Hage CA, Gaur V, Micanovic R, Hato T, Khan S, Winfree S, Doshi S, Moorthi RN, Twigg H, Wu XR, Dagher PC, Srour EF, El-Achkar TM (2022) The kidney protects against sepsis by producing systemic uromodulin. Am J Physiol Renal Physiol 323:F212–F226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cortvrindt C, Speeckaert R, Delanghe JR, Speeckaert MM (2022) Urinary epidermal growth factor: a promising “next generation” biomarker in kidney disease. Am J Nephrol 53:372–387

    Article  CAS  PubMed  Google Scholar 

  163. Zeid AM, Lamontagne JO, Zhang H, Marneros AG (2022) Epidermal growth factor deficiency predisposes to progressive renal disease. FASEB J 36:e22286

    Article  CAS  PubMed  Google Scholar 

  164. Smith JA, Stallons LJ, Schnellmann RG (2014) Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol 307:F435–F444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Norvik JV, Harskamp LR, Nair V, Shedden K, Solbu MD, Eriksen BO, Kretzler M, Gansevoort RT, Ju W, Melsom T (2021) Urinary excretion of epidermal growth factor and rapid loss of kidney function. Nephrol Dial Transplant 36:1882–1892

    Article  PubMed  Google Scholar 

  166. Ledeganck KJ, den Brinker M, Peeters E, Verschueren A, De Winter BY, France A, Dotremont H, Trouet D (2021) The next generation: urinary epidermal growth factor is associated with an early decline in kidney function in children and adolescents with type 1 diabetes mellitus. Diabetes Res Clin Pract 178:108945

    Article  CAS  PubMed  Google Scholar 

  167. Hanna M, Brophy PD, Giannone PJ, Joshi MS, Bauer JA, RamachandraRao S (2016) Early urinary biomarkers of acute kidney injury in preterm infants. Pediatr Res 80:218–223

    Article  CAS  PubMed  Google Scholar 

  168. Sweetman DU, Onwuneme C, Watson WR, O’Neill A, Murphy JF, Molloy EJ (2016) Renal function and novel urinary biomarkers in infants with neonatal encephalopathy. Acta Paediatr 105:e513–e519

    Article  CAS  PubMed  Google Scholar 

  169. Gupta C, Massaro AN, Ray PE (2016) A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy. Pediatr Nephrol 31:1167–1178

    Article  PubMed  PubMed Central  Google Scholar 

  170. Diao H, Jiao A, Yu B, He J, Zheng P, Yu J, Luo Y, Luo J, Mao X, Chen D (2020) Beet pulp: an alternative to improve the gut health of growing pigs. Animals (Basel) 10:1860

    Article  PubMed  Google Scholar 

  171. Xiu W, Chen Q, Wang Z, Wang J, Zhou Z (2020) Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1. Biochem Biophys Res Commun 533:282–288

    Article  CAS  PubMed  Google Scholar 

  172. Wu J, Zhou B, Pang X, Song X, Gu Y, Xie R, Liu T, Xu X, Wang B, Cao H (2022) Clostridium butyricum, a butyrate-producing potential probiotic, alleviates experimental colitis through epidermal growth factor receptor activation. Food Funct 13:7046–7061

    Article  CAS  PubMed  Google Scholar 

  173. Knoop KA, Coughlin PE, Floyd AN, Ndao IM, Hall-Moore C, Shaikh N, Gasparrini AJ, Rusconi B, Escobedo M, Good M, Warner BB, Tarr PI, Newberry RD (2020) Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc Natl Acad Sci U S A 117:7941–7949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Levesque CL, Akhtar N, Huynh E, Walk C, Wilcock P, Zhang Z, Dyce PW, de Lange CFM, Khafipour E, Li J (2018) The impact of epidermal growth factor supernatant on pig performance and ileal microbiota. Transl Anim Sci 2:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang S, Guo C, Zhou L, Zhong Z, Zhu W, Huang Y, Zhang Z, Gorgels TG, Berendschot TT (2016) Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. Br J Nutr 115:1509–1520

    Article  CAS  PubMed  Google Scholar 

  176. Zhang Z, Cao L, Zhou Y, Wang S, Zhou L (2016) Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC Microbiol 16:166

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article was supported by the National Natural Science Foundation of China (81571480), Sichuan Science and Technology Department Major Science and Technology Special Project (22ZDYF1470), and Luzhou Municipal People's Government-Southwest Medical University Science and Technology Strategic Cooperation Project (2020LZXNYDJ03).

Author information

Authors and Affiliations

Authors

Contributions

KY and WD designed the manuscript. KY wrote the manuscript. KY, GD, JL, and SZ collected the data for the manuscript. KY, GD, JL, SZ, and WD revised the manuscript. All authors contributed to the manuscript and approved the submitted version.

Corresponding author

Correspondence to Wenbin Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Du, G., Liu, J. et al. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 38, 3529–3547 (2023). https://doi.org/10.1007/s00467-023-05931-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-05931-z

Keywords

Navigation