Skip to main content

Advertisement

Log in

Transcriptional regulation of proximal tubular metabolism in acute kidney injury

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid β-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia–reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Muller MJ (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soltoff SP (1986) ATP and the regulation of renal cell function. Annu Rev Physiol 48:9–31

    Article  CAS  PubMed  Google Scholar 

  3. Schaub JA, Venkatachalam MA, Weinberg JM (2021) Proximal tubular oxidative metabolism in acute kidney injury and the transition to CKD. Kidney 360(2):355–364

    Article  Google Scholar 

  4. Legouis D, Faivre A, Cippa PE, de Seigneux S (2022) Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol Dial Transplant 37:1417–1425

    Article  CAS  PubMed  Google Scholar 

  5. Clark AJ, Parikh SM (2020) Mitochondrial metabolism in acute kidney injury. Semin Nephrol 40:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhargava P, Schnellmann RG (2017) Mitochondrial energetics in the kidney. Nat Rev Nephrol 13:629–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A (2020) Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 319:F1105–F1116

    Article  CAS  PubMed  Google Scholar 

  8. Iwaki T, Bennion BG, Stenson EK, Lynn JC, Otinga C, Djukovic D, Raftery D, Fei L, Wong HR, Liles WC, Standage SW (2019) PPARalpha contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis. Physiol Rep 7:e14078

    Article  PubMed  PubMed Central  Google Scholar 

  9. Piret SE, Attallah AA, Gu X, Guo Y, Gujarati NA, Henein J, Zollman A, Hato T, Ma’ayan A, Revelo MP, Dickman KG, Chen CH, Shun CT, Rosenquist TA, He JC, Mallipattu SK (2021) Loss of proximal tubular transcription factor Kruppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney Int 100:1250–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dhillon P, Park J, Hurtado Del Pozo C, Li L, Doke T, Huang S, Zhao J, Kang HM, Shrestra R, Balzer MS, Chatterjee S, Prado P, Han SY, Liu H, Sheng X, Dierickx P, Batmanov K, Romero JP, Prosper F, Li M, Pei L, Kim J, Montserrat N, Susztak K (2021) The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab 33(379–394):e378

    Google Scholar 

  11. Xu S, Jia P, Fang Y, Jin J, Sun Z, Zhou W, Li J, Zhang Y, Wang X, Ren T, Zou Z, Ding X (2022) Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation. Kidney Int 101:987–1002

    Article  CAS  PubMed  Google Scholar 

  12. Gai Z, Chu L, Xu Z, Song X, Sun D, Kullak-Ublick GA (2017) Farnesoid X receptor activation protects the kidney from ischemia-reperfusion damage. Sci Rep 7:9815

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith JA, Stallons LJ, Schnellmann RG (2014) Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol 307:F435-444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol 27:3356–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piret SE, Guo Y, Attallah AA, Horne SJ, Zollman A, Owusu D, Henein J, Sidorenko VS, Revelo MP, Hato T, Ma’ayan A, He JC, Mallipattu SK (2021) Kruppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proc Natl Acad Sci U S A 118:e2024414118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE, Karumanchi SA, Rhee EP, Parikh SM (2016) PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531:528–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bose M, Yergeau C, D’Souza Y, Cuthbertson DD, Lopez MJ, Smolen AK, Braverman NE (2022) Characterization of severity in Zellweger spectrum disorder by clinical findings: a scoping review, meta-analysis and medical chart review. Cells 11:1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ansermet C, Centeno G, Pradervand S, Harmacek D, Garcia A, Daraspe J, Kocherlakota S, Baes M, Bignon Y, Firsov D (2022) Renal tubular peroxisomes are dispensable for normal kidney function. JCI Insight 7:e155836

    Article  PubMed  PubMed Central  Google Scholar 

  19. Assmann N, Dettmer K, Simbuerger JMB, Broeker C, Nuernberger N, Renner K, Courtneidge H, Klootwijk ED, Duerkop A, Hall A, Kleta R, Oefner PJ, Reichold M, Reinders J (2016) Renal Fanconi syndrome is caused by a mistargeting-based mitochondriopathy. Cell Rep 15:1423–1429

    Article  CAS  PubMed  Google Scholar 

  20. Klootwijk ED, Reichold M, Helip-Wooley A, Tolaymat A, Broeker C, Robinette SL, Reinders J, Peindl D, Renner K, Eberhart K et al (2014) Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. N Engl J Med 370:129–138

    Article  CAS  PubMed  Google Scholar 

  21. Ranea-Robles P, Portman K, Bender A, Lee K, He JC, Mulholland DJ, Argmann C, Houten SM (2021) Peroxisomal L-bifunctional protein (EHHADH) deficiency causes male-specific kidney hypertrophy and proximal tubular injury in mice. Kidney 360(2):1441–1454

    Article  Google Scholar 

  22. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  CAS  PubMed  Google Scholar 

  23. Meyer C, Stumvoll M, Welle S, Woerle HJ, Haymond M, Gerich J (2003) Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab 285:E819-826

    Article  CAS  PubMed  Google Scholar 

  24. Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J (2002) Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab 282:E428-434

    Article  CAS  PubMed  Google Scholar 

  25. Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G, Wagner CA (2010) Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol 299:F141-154

    Article  CAS  PubMed  Google Scholar 

  26. Halestrap AP (2013) Monocarboxylic acid transport. Compr Physiol 3:1611–1643

    Article  PubMed  Google Scholar 

  27. Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220

    Article  PubMed  PubMed Central  Google Scholar 

  28. Curthoys NP, Moe OW (2014) Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 9:1627–1638

    Article  CAS  PubMed  Google Scholar 

  29. Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z (2019) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29(417–429):e414

    Google Scholar 

  30. Lyu Z, Mao Z, Li Q, Xia Y, Liu Y, He Q, Wang Y, Zhao H, Lu Z, Zhou Q (2018) PPARgamma maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 38:178–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ralto KM, Rhee EP, Parikh SM (2020) NAD(+) homeostasis in renal health and disease. Nat Rev Nephrol 16:99–111

    Article  CAS  PubMed  Google Scholar 

  32. Idrovo JP, Yang WL, Nicastro J, Coppa GF, Wang P (2012) Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J Surg Res 177:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miguel V, Tituana J, Herrero JI, Herrero L, Serra D, Cuevas P, Barbas C, Puyol DR, Marquez-Exposito L, Ruiz-Ortega M, Castillo C, Sheng X, Susztak K, Ruiz-Canela M, Salas-Salvado J, Gonzalez MAM, Ortega S, Ramos R, Lamas S (2021) Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest 131:e140695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bataille A, Galichon P, Chelghoum N, Oumoussa BM, Ziliotis MJ, Sadia I, Vandermeersch S, Simon-Tillaux N, Legouis D, Cohen R, Xu-Dubois YC, Commereuc M, Rondeau E, Le Crom S, Hertig A (2018) Increased fatty acid oxidation in differentiated proximal tubular cells surviving a reversible episode of acute kidney injury. Cell Physiol Biochem 47:1338–1351

    Article  CAS  PubMed  Google Scholar 

  35. Chiba T, Peasley KD, Cargill KR, Maringer KV, Bharathi SS, Mukherjee E, Zhang Y, Holtz A, Basisty N, Yagobian SD, Schilling B, Goetzman ES, Sims-Lucas S (2019) Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI. J Am Soc Nephrol 30:2384–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M, Kaneko K, Uchino E, Sato Y, Fukuma S, Imamura H, Matsuda M, Yanagita M (2020) Spatiotemporal ATP dynamics during AKI predict renal prognosis. J Am Soc Nephrol 31:2855–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lubojemska A, Stefana MI, Sorge S, Bailey AP, Lampe L, Yoshimura A, Burrell A, Collinson L, Gould AP (2021) Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol 19:e3001230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feldkamp T, Weinberg JM, Horbelt M, Von Kropff C, Witzke O, Nurnberger J, Kribben A (2009) Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation. Nephrol Dial Transplant 24:43–51

    Article  CAS  PubMed  Google Scholar 

  39. Standage SW, Caldwell CC, Zingarelli B, Wong HR (2012) Reduced peroxisome proliferator-activated receptor alpha expression is associated with decreased survival and increased tissue bacterial load in sepsis. Shock 37:164–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pei Z, Deng S, Xie D, Lv M, Guo W, Liu D, Zheng Z, Long X (2018) Protective role of fenofibrate in sepsis-induced acute kidney injury in BALB/c mice. RSC Adv 8:28510–28517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamijo Y, Hora K, Tanaka N, Usuda N, Kiyosawa K, Nakajima T, Gonzalez FJ, Aoyama T (2002) Identification of functions of peroxisome proliferator-activated receptor alpha in proximal tubules. J Am Soc Nephrol 13:1691–1702

    Article  CAS  PubMed  Google Scholar 

  42. Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, Jenkins AJ, O’Connell RL, Whiting MJ, Glasziou PP, Simes RJ, Kesaniemi YA, Gebski VJ, Scott RS, Keech AC, FIELD Study Investigators (2011) Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54:280–290

    Article  CAS  PubMed  Google Scholar 

  43. Frazier R, Mehta R, Cai X, Lee J, Napoli S, Craven T, Tuazon J, Safdi A, Scialla J, Susztak K, Isakova T (2019) Associations of fenofibrate therapy with incidence and progression of CKD in patients with type 2 diabetes. Kidney Int Rep 4:94–102

    Article  PubMed  Google Scholar 

  44. Prosdocimo DA, John JE, Zhang L, Efraim ES, Zhang R, Liao X, Jain MK (2015) KLF15 and PPARalpha cooperate to regulate cardiomyocyte lipid gene expression and oxidation. PPAR Res 2015:201625

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yu X, Xu M, Meng X, Li S, Liu Q, Bai M, You R, Huang S, Yang L, Zhang Y, Jia Z, Zhang A (2020) Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci Transl Med 12:eaay7591

    Article  CAS  PubMed  Google Scholar 

  46. Zou G, Zhou Z, Xi X, Huang R, Hu H (2021) Pioglitazone ameliorates renal ischemia-reperfusion injury via inhibition of NF-kappaB activation and inflammation in rats. Front Physiol 12:707344

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bagattin A, Hugendubler L, Mueller E (2010) Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci U S A 107:20376–20381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reddy JK, Goel SK, Nemali MR, Carrino JJ, Laffler TG, Reddy MK, Sperbeck SJ, Osumi T, Hashimoto T, Lalwani ND (1986) Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc Natl Acad Sci U S A 83:1747–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Nourbakhsh N, Pham H, Tham R, Zuckerman JE, Singh P (2020) Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 319:F229–F244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zager RA, Johnson AC, Becker K (2014) Renal cortical pyruvate depletion during AKI. J Am Soc Nephrol 25:998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Legouis D, Ricksten SE, Faivre A, Verissimo T, Gariani K, Verney C, Galichon P, Berchtold L, Feraille E, Fernandez M, Placier S, Koppitch K, Hertig A, Martin PY, Naesens M, Pugin J, McMahon AP, Cippa PE, de Seigneux S (2020) Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab 2:732–743

    Article  CAS  PubMed  Google Scholar 

  52. Kim J, Kim KY, Jang HS, Yoshida T, Tsuchiya K, Nitta K, Park JW, Bonventre JV, Park KM (2009) Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 296:F622-633

    Article  CAS  PubMed  Google Scholar 

  53. Scantlebery AM, Tammaro A, Mills JD, Rampanelli E, Kors L, Teske GJ, Butter LM, Liebisch G, Schmitz G, Florquin S, Leemans JC, Roelofs JJ (2021) The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia-reperfusion injury. J Pathol 253:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou HL, Zhang R, Anand P, Stomberski CT, Qian Z, Hausladen A, Wang L, Rhee EP, Parikh SM, Karumanchi SA, Stamler JS (2019) Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565:96–100

    Article  CAS  PubMed  Google Scholar 

  55. Faivre A, Verissimo T, Auwerx H, Legouis D, de Seigneux S (2021) Tubular cell glucose metabolism shift during acute and chronic injuries. Front Med (Lausanne) 8:742072

    Article  PubMed  Google Scholar 

  56. Chavalit T, Rojvirat P, Muangsawat S, Jitrapakdee S (2013) Hepatocyte nuclear factor 4alpha regulates the expression of the murine pyruvate carboxylase gene through the HNF4-specific binding motif in its proximal promoter. Biochim Biophys Acta 1829:987–999

    Article  CAS  PubMed  Google Scholar 

  57. Fatima K, Mathew S, Faheem M, Mehmood T, Yassine HM, Al Thani AA, Abdel-Hafiz H, Al Ghamdy K, Qadri I (2018) The dual specificity role of transcription factor FOXO in type 2-diabetes and cancer. Curr Pharm Des 24:2839–2848

    Article  CAS  PubMed  Google Scholar 

  58. Kersten S, Stienstra R (2017) The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136:75–84

    Article  CAS  PubMed  Google Scholar 

  59. Casemayou A, Fournel A, Bagattin A, Schanstra J, Belliere J, Decramer S, Marsal D, Gillet M, Chassaing N, Huart A, Pontoglio M, Knauf C, Bascands JL, Chauveau D, Faguer S (2017) Hepatocyte nuclear factor-1beta controls mitochondrial respiration in renal tubular cells. J Am Soc Nephrol 28:3205–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Piedrafita A, Balayssac S, Casemayou A, Saulnier-Blache JS, Lucas A, Iacovoni JS, Breuil B, Chauveau D, Decramer S, Malet-Martino M, Schanstra JP, Faguer S (2021) Hepatocyte nuclear factor-1beta shapes the energetic homeostasis of kidney tubule cells. FASEB J 35:e21931

    Article  CAS  PubMed  Google Scholar 

  61. Conde E, Alegre L, Blanco-Sanchez I, Saenz-Morales D, Aguado-Fraile E, Ponte B, Ramos E, Saiz A, Jimenez C, Ordonez A, Lopez-Cabrera M, del Peso L, de Landazuri MO, Liano F, Selgas R, Sanchez-Tomero JA, Garcia-Bermejo ML (2012) Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS One 7:e33258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Conde E, Gimenez-Moyano S, Martin-Gomez L, Rodriguez M, Ramos ME, Aguado-Fraile E, Blanco-Sanchez I, Saiz A, Garcia-Bermejo ML (2017) HIF-1alpha induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep 7:41099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu J, Kumar S, Dolzhenko E, Alvarado GF, Guo J, Lu C, Chen Y, Li M, Dessing MC, Parvez RK, Cippa PE, Krautzberger AM, Saribekyan G, Smith AD, McMahon AP (2017) Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight 2:e94716

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K(2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46

    Article  CAS  PubMed  Google Scholar 

  65. Standage SW, Xu S, Brown L, Ma Q, Koterba A, Lahni P, Devarajan P, Kennedy MA (2021) NMR-based serum and urine metabolomic profile reveals suppression of mitochondrial pathways in experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 320:F984–F1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, Lerner A, Kher A, Kim SH, Khoury CC, Herzig SJ, Trovato ME, Simon-Tillaux N, Lynch MR, Thadhani RI, Clish CB, Khabbaz KR, Rhee EP, Waikar SS, Berg AH, Parikh SM (2018) De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nat Med 24:1351–1359

    Article  CAS  PubMed  Google Scholar 

  67. Zheng X, Zhang A, Binnie M, McGuire K, Webster SP, Hughes J, Howie SEM, Mole DJ (2019) Kynurenine 3-monooxygenase is a critical regulator of renal ischemia-reperfusion injury. Exp Mol Med 51:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK (2007) Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab 5:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Torosyan R, Huang S, Bommi PV, Tiwari R, An SY, Schonfeld M, Rajendran G, Kavanaugh MA, Gibbs B, Truax AD, Bohney S, Calcutt MW, Kerr EW, Leonardi R, Gao P, Chandel NS, Kapitsinou PP (2021) Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway. Cell Rep 36:109547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hato T, Friedman AN, Mang H, Plotkin Z, Dube S, Hutchins GD, Territo PR, McCarthy BP, Riley AA, Pichumani K, Malloy CR, Harris RA, Dagher PC, Sutton TA (2016) Novel application of complementary imaging techniques to examine in vivo glucose metabolism in the kidney. Am J Physiol Renal Physiol 310:F717–F725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hato T, Winfree S, Day R, Sandoval RM, Molitoris BA, Yoder MC, Wiggins RC, Zheng Y, Dunn KW, Dagher PC (2017) Two-photon intravital fluorescence lifetime imaging of the kidney reveals cell-type specific metabolic signatures. J Am Soc Nephrol 28:2420–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taylor MJ, Lukowski JK, Anderton CR (2021) Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J Am Soc Mass Spectrom 32:872–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryan DG, Yang M, Prag HA, Blanco GR, Nikitopoulou E, Segarra-Mondejar M, Powell CA, Young T, Burger N, Miljkovic JL, Minczuk M, Murphy MP, von Kriegsheim A, Frezza C (2021) Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism. Elife 10:e72593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cippa PE, Sun B, Liu J, Chen L, Naesens M, McMahon AP (2018) Transcriptional trajectories of human kidney injury progression. JCI Insight 3:e123151

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kirita Y, Wu H, Uchimura K, Wilson PC, Humphreys BD (2020) Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A 117:15874–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu D, Li X, Tian Y (2022) Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 47:645–659

    Article  CAS  PubMed  Google Scholar 

  77. Fan PC, Chen CC, Chen YC, Chang YS, Chu PH (2016) MicroRNAs in acute kidney injury. Hum Genomics 10:29

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by an American Society of Nephrology KidneyCure Joseph V. Bonventre Research Scholar Award and American Heart Association Career Development Award to S.E.P., and National Institute of Diabetes and Digestive and Kidney Diseases (DK112984, DK121846) and Veterans Affairs (1I01BX003698, 1I01BX005300) grants to S.K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sian E. Piret.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piret, S.E., Mallipattu, S.K. Transcriptional regulation of proximal tubular metabolism in acute kidney injury. Pediatr Nephrol 38, 975–986 (2023). https://doi.org/10.1007/s00467-022-05748-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05748-2

Keywords

Navigation