Skip to main content

Advertisement

Log in

Acute kidney injury during cisplatin therapy and associations with kidney outcomes 2 to 6 months post-cisplatin in children: a multi-centre, prospective observational study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Few studies describe acute kidney injury (AKI) burden during paediatric cisplatin therapy and post-cisplatin kidney outcomes. We determined risk factors for and rate of (1) AKI during cisplatin therapy, (2) chronic kidney disease (CKD) and hypertension 2–6 months post-cisplatin, and (3) whether AKI is associated with 2–6-month outcomes.

Methods

This prospective cohort study enrolled children (aged < 18 years at cancer diagnosis) treated with cisplatin from twelve Canadian hospitals. AKI during cisplatin therapy (primary exposure) was defined based on Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine criteria (≥ stage one). Severe electrolyte abnormalities (secondary exposure) included ≥ grade three hypophosphatemia, hypokalemia, or hypomagnesemia (National Cancer Institute Common Terminology Criteria for Adverse Events v4.0). CKD was albuminuria or decreased kidney function for age (KDIGO guidelines). Hypertension was defined based on the 2017 American Academy of Pediatrics guidelines.

Results

Of 159 children (median [interquartile range [IQR]] age: 6 [2–12] years), 73/159 (46%) participants developed AKI and 55/159 (35%) experienced severe electrolyte abnormalities during cisplatin therapy. At median [IQR] 90 [76–110] days post-cisplatin, 53/119 (45%) had CKD and 18/128 (14%) developed hypertension. In multivariable analyses, AKI was not associated with 2–6-month CKD or hypertension. Severe electrolyte abnormalities during cisplatin were associated with having 2–6-month CKD or hypertension (adjusted odds ratio (AdjOR) [95% CI]: 2.65 [1.04–6.74]). Having both AKI and severe electrolyte abnormalities was associated with 2–6-month hypertension (AdjOR [95% CI]: 3.64 [1.05–12.62]).

Conclusions

Severe electrolyte abnormalities were associated with kidney outcomes. Cisplatin dose optimization to reduce toxicity and clear post-cisplatin kidney follow-up guidelines are needed.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Hudson MM, Ness KK, Gurney JG, Mulrooney DA, Chemaitilly W, Krull KR, Green DM, Armstrong GT, Nottage KA, Jones KE, Sklar CA, Srivastava DK, Robison LL (2013) Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA 309:2371–2381. https://doi.org/10.1001/jama.2013.6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goren MP, Wright RK, Horowitz ME (1986) Cumulative renal tubular damage associated with cisplatin nephrotoxicity. Cancer Chemother Pharmacol 18:69–73. https://doi.org/10.1007/BF00253068

    Article  CAS  PubMed  Google Scholar 

  3. Ariceta G, Rodriguez-Soriano J, Vallo A, Navajas A (1997) Acute and chronic effects of cisplatin therapy on renal magnesium homeostasis. Med Pediatr Oncol 28:35–40. https://doi.org/10.1002/(sici)1096-911x(199701)28:1%3c35::aid-mpo7%3e3.0.co;2-u

    Article  CAS  PubMed  Google Scholar 

  4. McMahon KR, Harel-Sterling M, Pizzi M, Huynh L, Hessey E, Zappitelli M (2018) Long-term renal follow-up of children treated with cisplatin, carboplatin, or ifosfamide: a pilot study. Pediatr Nephrol 33:2311–2320. https://doi.org/10.1007/s00467-018-3976-5

    Article  PubMed  Google Scholar 

  5. Skinner R, Parry A, Price L, Cole M, Craft AW, Pearson AD (2009) Persistent nephrotoxicity during 10-year follow-up after cisplatin or carboplatin treatment in childhood: relevance of age and dose as risk factors. Eur J Cancer 45:3213–3219. https://doi.org/10.1016/j.ejca.2009.06.032

    Article  CAS  PubMed  Google Scholar 

  6. Sterling M, Al-Ismaili Z, McMahon KR, Piccioni M, Pizzi M, Mottes T, Lands LC, Abish S, Fleming AJ, Bennett MR, Palijan A, Devarajan P, Goldstein SL, O'Brien MM, Zappitelli M (2017) Urine biomarkers of acute kidney injury in noncritically ill, hospitalized children treated with chemotherapy. Pediatr Blood Cancer 64:10.1002/pbc.26538. https://doi.org/10.1002/pbc.26538.10.1002/pbc.26538

  7. Pietila S, Ala-Houhala M, Lenko HL, Harmoinen AP, Turjanmaa V, Makipernaa A (2005) Renal impairment and hypertension in brain tumor patients treated in childhood are mainly associated with cisplatin treatment. Pediatr Blood Cancer 44:363–369. https://doi.org/10.1002/pbc.20272

    Article  PubMed  Google Scholar 

  8. McMahon KR, Rassekh SR, Schultz KR, Blydt-Hansen T, Cuvelier GDE, Mammen C, Pinsk M, Carleton BC, Tsuyuki RT, Ross CJD, Palijan A, Huynh L, Yordanova M, Crepeau-Hubert F, Wang S, Boyko D, Zappitelli M, Applying Biomarkers to Minimize Long-term Effects of Childhood/Adolescent Cancer Treatment Research Study Group (2020) Epidemiologic Characteristics of Acute Kidney Injury During Cisplatin Infusions in Children Treated for Cancer. JAMA Netw Open 3:e203639. https://doi.org/10.1001/jamanetworkopen.2020.3639

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kooijmans EC, Bokenkamp A, Tjahjadi NS, Tettero JM, van Dulmen-den BE, van der Pal HJ, Veening MA (2019) Early and late adverse renal effects after potentially nephrotoxic treatment for childhood cancer. Cochrane Database Syst Rev 3:1–253. https://doi.org/10.1002/14651858.CD008944.pub3

    Article  Google Scholar 

  10. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448. https://doi.org/10.1038/ki.2011.379

    Article  PubMed  Google Scholar 

  11. Hsu CY, Hsu RK, Yang J, Ordonez JD, Zheng S, Go AS (2016) Elevated BP after AKI. J Am Soc Nephrol 27:914–923. https://doi.org/10.1681/asn.2014111114

    Article  CAS  PubMed  Google Scholar 

  12. Madsen NL, Goldstein SL, Froslev T, Christiansen CF, Olsen M (2017) Cardiac surgery in patients with congenital heart disease is associated with acute kidney injury and the risk of chronic kidney disease. Kidney Int 92:751–756. https://doi.org/10.1016/j.kint.2017.02.021

    Article  PubMed  Google Scholar 

  13. Menon S, Kirkendall ES, Nguyen H, Goldstein SL (2014) Acute kidney injury associated with high nephrotoxic medication exposure leads to chronic kidney disease after 6 months. J Pediatr 165(522–527):e522. https://doi.org/10.1016/j.jpeds.2014.04.058

    Article  CAS  Google Scholar 

  14. Greenberg JH, Zappitelli M, Devarajan P, Thiessen-Philbrook HR, Krawczeski C, Li S, Garg AX, Coca S, Parikh CR (2016) Kidney Outcomes 5 Years After Pediatric Cardiac Surgery: The TRIBE-AKI Study. JAMA Pediatr 170:1071–1078. https://doi.org/10.1001/jamapediatrics.2016.1532

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338:1650–1656. https://doi.org/10.1056/NEJM199806043382302

    Article  CAS  PubMed  Google Scholar 

  16. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081. https://doi.org/10.1016/S0140-6736(10)60674-5

    Article  Google Scholar 

  17. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury (2012). Kidney Int Suppl 2:1–138

  18. Children's Oncology Group. Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers, Version 5.0. Monrovia, CA; Available at: http://www.survivorshipguidelines.org. (2018)

  19. McMahon KR, Rod Rassekh S, Schultz KR, Pinsk M, Blydt-Hansen T, Mammen C, Tsuyuki RT, Devarajan P, Cuvelier GD, Mitchell LG, Baruchel S, Palijan A, Carleton BC, Ross CJ, Zappitelli M, Applying Biomarkers to Minimize Long-Term Effects of Childhood/Adolescent Cancer Treatment Research Group (2017) Design and Methods of the Pan-Canadian Applying Biomarkers to Minimize Long-Term Effects of Childhood/Adolescent Cancer Treatment (ABLE) Nephrotoxicity Study: A Prospective Observational Cohort Study. Can J Kidney Health Dis 4:2054358117690338

    Article  PubMed  PubMed Central  Google Scholar 

  20. CDC Growth Charts (2000) Centers for Disease Control and Prevention/ National Center for Health Statistics. http://www.cdc.gov/growthcharts/. Accessed August 29 2017

  21. World Health Organization. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development (2006) Geneva

  22. Sharma A, Metzger DL (2017) R Shiny Apps from CPEG-GCEP. https://apps.cpeg-gcep.net Accessed 12 December 2019

  23. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM (2017) Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 140:e20171904. https://doi.org/10.1542/peds.2017-1904

    Article  PubMed  Google Scholar 

  24. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010

    Article  PubMed  Google Scholar 

  25. Zappitelli M, Zhang X, Foster BJ (2010) Estimating glomerular filtration rate in children at serial follow-up when height is unknown. Clin J Am Soc Nephrol 5:1763–1769. https://doi.org/10.2215/cjn.08741209

    Article  PubMed  PubMed Central  Google Scholar 

  26. Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0. (2010). https://evs.nci.nih.gov/ftp1/CTCAE/About.html. Accessed September 8 2017

  27. Piepsz A, Tondeur M, Ham H (2006) Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33:1477–1482. https://doi.org/10.1007/s00259-006-0179-2

    Article  CAS  PubMed  Google Scholar 

  28. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO (2012) Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (2013). Kidney Int Suppl 3:1–150

    Google Scholar 

  29. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843. https://doi.org/10.2215/CJN.01640309

    Article  PubMed  Google Scholar 

  30. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ng DK, Schwartz GJ, Schneider MF, Furth SL, Warady BA (2018) Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int 94:170–177. https://doi.org/10.1016/j.kint.2018.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  32. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71:e13–e115. https://doi.org/10.1161/hyp.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  33. Moffett BS, Goldstein SL (2011) Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol 6:856–863. https://doi.org/10.2215/CJN.08110910

    Article  PubMed  PubMed Central  Google Scholar 

  34. Skinner R, Pearson AD, Price L, Coulthard MG, Craft AW (1992) The influence of age on nephrotoxicity following chemotherapy in children. Br J Cancer Suppl 18:S30-35

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, Kim RW, Parikh CR, TRIBE-AKI Consortium (2011) Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med 39:1493–1499

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garvin JH, Selch MT, Holmes E, Berger MS, Finlay JL, Flannery A, Goldwein JW, Packer RJ, Rorke-Adams LB, Shiminski-Maher T, Sposto R, Stanley P, Tannous R, Pollack IF (2012) Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children’s Cancer Group protocol 9942: A report from the Children’s Oncology Group. Pediatr Blood Cancer 59:1183–1189. https://doi.org/10.1002/pbc.24274

    Article  PubMed  Google Scholar 

  37. Fisher MJ, Lange BJ, Needle MN, Janss AJ, Shu HK, Adamson PC, Phillips PC (2004) Amifostine for children with medulloblastoma treated with cisplatin-based chemotherapy. Pediatr Blood Cancer 43:780–784. https://doi.org/10.1002/pbc.20132

    Article  PubMed  Google Scholar 

  38. Finkel M, Goldstein A, Steinberg Y, Granowetter L, Trachtman H (2014) Cisplatinum nephrotoxicity in oncology therapeutics: retrospective review of patients treated between 2005 and 2012. Pediatr Nephrol 29:2421–2424. https://doi.org/10.1007/s00467-014-2935-z

    Article  PubMed  Google Scholar 

  39. Marina N, Fontanesi J, Kun L, Rao B, Jenkins JJ, Thompson EI, Etcubanas E (1992) Treatment of childhood germ cell tumors. Review of the St. Jude experience from 1979 to 1988. Cancer 70:2568–2575

    Article  CAS  PubMed  Google Scholar 

  40. Mulder RL, Knijnenburg SL, Geskus RB, van Dalen EC, van der Pal HJ, Koning CC, Bouts AH, Caron HN, Kremer LC (2013) Glomerular function time trends in long-term survivors of childhood cancer: a longitudinal study. Cancer Epidemiol Biomarkers Prev 22:1736–1746. https://doi.org/10.1158/1055-9965.epi-13-0036

    Article  CAS  PubMed  Google Scholar 

  41. Dekkers IA, Blijdorp K, Cransberg K, Pluijm SM, Pieters R, Neggers SJ, van den Heuvel-Eibrink MM (2013) Long-term nephrotoxicity in adult survivors of childhood cancer. Clin J Am Soc Nephrol 8:922–929. https://doi.org/10.2215/cjn.09980912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Musiol K, Sobol-Milejska G, Nowotka L, Torba K, Kniazewska M, Wos H (2016) Renal function in children treated for central nervous system malignancies. Childs Nerv Syst 32:1431–1440. https://doi.org/10.1007/s00381-016-3130-2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Knijnenburg SL, Jaspers MW, van der Pal HJ, Schouten-van Meeteren AY, Bouts AH, Lieverst JA, Bokenkamp A, Koning CC, Oldenburger F, Wilde JC, van Leeuwen FE, Caron HN, Kremer LC (2012) Renal dysfunction and elevated blood pressure in long-term childhood cancer survivors. Clin J Am Soc Nephrol 7:1416–1427. https://doi.org/10.2215/CJN.09620911

    Article  PubMed  PubMed Central  Google Scholar 

  44. Skinner R, Pearson AD, English MW, Price L, Wyllie RA, Coulthard MG, Craft AW (1998) Cisplatin dose rate as a risk factor for nephrotoxicity in children. Br J Cancer 77:1677–1682. https://doi.org/10.1038/bjc.1998.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Age-Adjusted Prevalence of CKD Stages 1–4 by Gender 1999–2012. National Health and Nutrition Examination Survey. (2017) Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System—United States. http://www.cdc.gov/ckd. Accessed August 29 2017

  46. Paradis G, Tremblay MS, Janssen I, Chiolero A, Bushnik T (2010) Blood pressure in Canadian children and adolescents. Health Rep 21:15–22

    PubMed  Google Scholar 

  47. Stohr W, Paulides M, Bielack S, Jurgens H, Treuner J, Rossi R, Langer T, Beck JD (2007) Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 48:447–452. https://doi.org/10.1002/pbc.20858

    Article  CAS  PubMed  Google Scholar 

  48. Vianna HR, Soares CM, Silveira KD, Elmiro GS, Mendes PM, de Sousa TM, Teixeira MM, Miranda DM, Simões E Silva AC (2013) Cytokines in chronic kidney disease: potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr Nephrol 28:463–469. https://doi.org/10.1007/s00467-012-2363-x

    Article  PubMed  Google Scholar 

  49. Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887-899

    Article  CAS  PubMed  Google Scholar 

  50. Kist-van Holthe JE, Goedvolk CA, Brand R, van Weel MH, Bredius RG, van Oostayen JA, Vossen JM, van der Heijden BJ (2002) Prospective study of renal insufficiency after bone marrow transplantation. Pediatr Nephrol 17:1032–1037. https://doi.org/10.1007/s00467-002-0989-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank all the study participants and their families. We acknowledge the work of the following clinical research personnel for their involvement in the study: Pina Giuliano, Karen Mazil, Jessica Scheidl, Susan Talmey and Tao Wang (Alberta Children's Hospital, Calgary, Alberta, Canada); Octavia Choi, Cecilia Crosby, Jessica Davis, Fatima Dharsee, Mateo Farfan, Rohan Kakkar, Nicole Kelly, Alecia Lim, Alicia Oger, Ritu Ratan, Jennifer Sergeant and Grace Tam (British Columbia Children’s Hospital, Vancouver, British Columbia, Canada); Nancy Coreas, Megan Friesen, Rebekah Hiebert, Jodi Karwacki, Krista Mueller, Ashley Ouelette and Kiera Unger (CancerCare Manitoba, Winnipeg, Manitoba, Canada); Barbara Desbiens, Melanie Ernst, Marie-Christine Gagnon and Nadine Roy (Centre Hospitalier Universitaire de Québec—Université Laval, Quebec, Quebec, Canada); Ernestine Chablis, Bianka Courcelle, Angélique Courtade, Catherine Desjean, Marc-Antoine Nadeau, Marie Saint-Jacques, Martine Therrien and Caroline Tra (Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada); Sandra Blamires, Tianna Deluzio, Becky Malkin, Mariam Mikhail and Leslie Paddock (Children’s Hospital: London Health Sciences Centre, London, Ontario, Canada); Nathan Adolphe, Brooke Bowerman, Isabelle Laforest, Oluwatoni Adeniyi, Kelly-Ann Ramakko and Jenna-Lee Tremblay (Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada); Mandy Bouchard (IWK Health Centre, Halifax, Nova Scotia, Canada); Shawde Harris and Rachel Simpson (McMaster Children’s Hospital, Hamilton, Ontario, Canada); Anelise Espirito Santo, Jackie Girgis, Dominique Lafrenière, Martine Nagy and Sandra Pepin (Montreal Children’s Hospital, MUHC, Montreal, Quebec, Canada); Linda Churcher, Dianne Cortez, Kevin Dietrich, Brenda Ennis, Nicholas Howe, Crystal Lefebvre, Nicole Orrell and Holly Sykora (Stollery Children's Hospital, Edmonton, Alberta, Canada); Abongnwen Abianui, Rachel Alix, Beren Avci, Aparna Bhan, Eric Lee, Darshika Mistry, Niwethaa Nadesan, Nicholas Pasquale, Subitha Rajakumaran, Grace Tran, Megan Wood and Elyze Yamasaki (The Hospital for Sick Children, Toronto, Ontario, Canada). Thank you to the Epidemiology Coordinating and Research Centre team (Departments of Pharmacology and Medicine, University of Alberta, Edmonton, Canada) for data support, entry, queries and management. We would like to thank Anat Halevy, MSc (University of British Columbia, Vancouver, Canada) for the ABLE Study support. Thank you to Michael Pizzi and Olivier Pouliot (Research Institute of the MUHC team members) for their contributions. We also thank Vedran Cockovski (Hospital for Sick Children, Toronto, Canada) for his contributions. They were compensated for their time. Members of the ABLE Study Group include Sylvain Baruchel, MD (Hospital for Sick Children, Toronto, Canada), Eric Bouffet, MD (Hospital for Sick Children, Toronto, Canada), Tom Blydt-Hansen MD (British Columbia Children’s Hospital, Vancouver, Canada), Bruce C. Carleton, PharmD (BC Children’s Hospital Research Institute, Vancouver, Canada), Geoff D. E. Cuvelier, MD (CancerCare Manitoba, Winnipeg, Canada), Sunil Desai, MBChB (University of Alberta, Edmonton, Canada), Prasad Devarajan, MD (Cincinnati Children’s Hospital Medical Center, Cincinnati, USA), Conrad Fernandez, MD (IWK Health Centre, Halifax, Canada), Adam Fleming, MD (McMaster Children’s Hospital at Hamilton Health Sciences, Hamilton, Canada), Paul Gibson, MD (Children’s Hospital: London Health Sciences Centre, London, Canada), Caroline Laverdière, MD (Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada), Victor Lewis, MD (Alberta Children’s Hospital, Calgary, Canada), Cherry Mammen, MD, MHSc (British Columbia Children’s Hospital, Vancouver, Canada), Mary L. McBride, MSc (University of British Columbia, Vancouver, Canada), Bruno Michon, MD (Centre Hospitalier Universitaire de Québec—Université Laval, Quebec Canada), Lesley G. Mitchell, MSc (University of Alberta, Alberta, Canada), Maury Pinsk, MD (University of Manitoba, Winnipeg, Canada), Raveena Ramphal, MBChB (Children’s Hospital of Eastern Ontario, Ottawa, Canada), Shahrad Rod Rassekh MD, MHSc (British Columbia Children’s Hospital, Vancouver, Canada), Colin J. D. Ross, PhD (BC Children’s Hospital Research Institute, Vancouver, Canada), Christine Sabapathy, MD (MUHC, Montreal, Canada), Kirk R. Schultz, MD (British Columbia Children’s Hospital, Vancouver, Canada), Ross T. Tsuyuki PharmD MSc (University of Alberta, Edmonton, Canada), Michael Zappitelli, MD, MSc (Toronto Hospital for Sick Children, Toronto, Canada) and Alexandra Zorzi, MD (Children’s Hospital: London Health Sciences Centre, London, Canada)

Funding

This work was supported by a Team Grant from the Canadian Institutes of Health Research (CIHR) and its partners, the Canadian Cancer Society, the C17 Research Network, the Garron Family Cancer Center at the Hospital for Sick Children, and the Pediatric Oncology Group of Ontario, which was awarded to Kirk R. Schultz, Sylvain Baruchel, Mary L. McBride, Lesley G. Mitchell, S. Rod Rassekh, Ross T. Tsuyuki, and Michael Zappitelli. This work was also supported by Start-up funds from the SickKids Research Institute. A Fonds de recherche du Québec—Santé (FRQS) Doctoral Training Bursary awarded to Kelly R. McMahon also helped support this work. Colin J. Ross was supported by a Michael Smith Foundation for Health Research Scholar Award.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization: McMahon, Lebel, Rassekh, Schultz, Blydt-Hansen, Cuvelier, Mammen, Pinsk, Tsuyuki, Ross, Palijan, Zappitelli; Data curation: McMahon, Lebel, Rassekh, Blydt-Hansen, Cuvelier, Mammen, Pinsk, Carleton, Tsuyuki, Huynh, Yordanova, Crépeau-Hubert, Wang, Boyko Zappitelli; Formal analysis: McMahon, Wang, Zappitelli; Funding acquisition: McMahon, Rassekh, Schultz, Blydt-Hansen, Cuvelier, Tsuyuki, Ross, Zappitelli; Investigation: McMahon, Rassekh, Schultz, Blydt-Hansen, Cuvelier, Mammen, Pinsk, Zappitelli; Methodology: McMahon, Lebel, Rassekh, Blydt-Hansen, Mammen, Pinsk, Carleton, Tsuyuki, Huynh, Yordanova, Crépeau-Hubert, Palijan, Boyko, Zappitelli; Project administration: McMahon, Rassekh, Schultz, Cuvelier, Tsuyuki, Ross, Huynh, Yordanova, Crépeau-Hubert, Palijan, Lee, Boyko, Zappitelli; Resources: McMahon, Rassekh, Schultz, Tsuyuki, Palijan, Boyko, Zappitelli; Software: Tsuyuki, Boyko, Zappitelli; Supervision: McMahon, Lebel, Rassekh, Schultz, Cuvelier, Tsuyuki, Palijan, Zappitelli; Writing-original draft: McMahon, Zappitelli; Writing-review and editing: All authors.

Corresponding author

Correspondence to Michael Zappitelli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract (PPTX 74 KB)

467_2022_5745_MOESM2_ESM.pdf

Supplementary file2 Study Procedure Detailing Sample and Data Collection and Study Measurements.Legend: A: Description of cancer treatment flow and study time points from Baseline (pre-cisplatin) to the 2–6-Month Study Visit. B: Description of data collection and study procedures at the various study time points (Baseline; Early Cisplatin Visit; Late Cisplatin Visit; During cisplatin treatment; Between cisplatin end and the 2–6-Month Study Visit; at the 2–6-Month Study Visit). The figure is not shown to scale time-wise horizontally. Abbreviations: GFR: Glomerular Filtration Rate; BP: Blood pressure; PICU: Pediatric Intensive Care Unit. (PDF 118 KB)

467_2022_5745_MOESM3_ESM.pdf

Supplementary file3 Definition of eAKI and Electrolyte Abnormalities and Need for Supplementation at 2–6 Months Adapted from the National Cancer Institute Common Terminology Criteria for Adverse Events Version 4.0 [26]. (PDF 104 KB)

Supplementary file4 Cancer Treatment Protocols by Cancer Type. (PDF 118 KB)

Supplementary file5 Details on Drugs and Treatments Included in Cancer Treatment Protocols.a. (PDF 106 KB)

467_2022_5745_MOESM6_ESM.pdf

Supplementary file6 Blood and Urine Collection Success and Analyte and Clinical Measurements Obtained at the 2–6-Month Study Visit.a (PDF 99 KB)

467_2022_5745_MOESM7_ESM.pdf

Supplementary file7 Data Collection Success Rate and Missing Data Rate from Baseline to 2–6-Month Study Visit. (PDF 166 KB)

467_2022_5745_MOESM8_ESM.pdf

Supplementary file8 Characteristics at Baseline, During Cisplatin Treatment and Between Cisplatin End and the 2–6-Month Post-Cisplatin Visit in Study Participants with versus without 2–6-Month Kidney Outcome Data. (PDF 124 KB)

467_2022_5745_MOESM9_ESM.pdf

Supplementary file9 Change in Estimated GFR From Baseline to End of Cisplatin Therapy to 2–6 Months Post-Cisplatin Therapy End. (PDF 120 KB)

467_2022_5745_MOESM10_ESM.pdf

Supplementary file10 Details on Drugs and Treatments Stratified by CKD and HTN Status at the 2–6-Month Study Visit. (PDF 129 KB)

467_2022_5745_MOESM11_ESM.pdf

Supplementary file11 Characteristics of Study Participants by CKD or HTN Status at the 2–6-Month Study Visit. (PDF 128 KB)

467_2022_5745_MOESM12_ESM.pdf

Supplementary file12 Baseline Measured or Estimated GFR of Study Participants by SCr-AKI During Cisplatin Therapy Status (Excluding 24 Hour Creatinine Clearance). (PDF 89 KB)

467_2022_5745_MOESM13_ESM.pdf

Supplementary file13 AKI Rates and Types During Cisplatin Therapy and Univariable Associations with 3-Month Outcomes Using the Stricter Time Window (56–112 Days Post-Cisplatin). (PDF 129 KB)

467_2022_5745_MOESM14_ESM.pdf

Supplementary file14 AKI Rates and Types During Cisplatin Therapy and Univariable Associations with 2–6-Month Outcomes With Participants With an Indeterminable Outcome Status Considered As Not Having the Outcome. (PDF 125 KB)

467_2022_5745_MOESM15_ESM.pdf

Supplementary file15 AKI Rates and Types During Cisplatin Therapy and Univariable Associations with Low Estimated GFR for Age at 2–6 Months. (PDF 114 KB)

Supplementary file16 AKI Rate in Patients who were Cisplatin Naïve Versus Not Upon Enrollment. (PDF 102 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMahon, K.R., Lebel, A., Rassekh, S.R. et al. Acute kidney injury during cisplatin therapy and associations with kidney outcomes 2 to 6 months post-cisplatin in children: a multi-centre, prospective observational study. Pediatr Nephrol 38, 1667–1685 (2023). https://doi.org/10.1007/s00467-022-05745-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05745-5

Keywords

Navigation