Skip to main content

Advertisement

Log in

The genetic basis of congenital anomalies of the kidney and urinary tract

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

During the past decades, remarkable progress has been made in our understanding of the molecular basis of kidney diseases, as well as in the ability to pinpoint disease-causing genetic changes. Congenital anomalies of the kidney and urinary tract (CAKUT) are remarkably diverse, and may be either isolated to the kidney or involve other systems, and are notorious in their variable genotype–phenotype correlations. Genetic conditions underlying CAKUT are individually rare, but collectively contribute to disease etiology in ~ 16% of children with CAKUT. In this review, we will discuss basic concepts of kidney development and genetics, common causes of monogenic CAKUT, and the approach to diagnosing and managing a patient with suspected monogenic CAKUT. Altogether, the concepts presented herein represent an introduction to the emergence of nephrogenetics, a fast-growing multi-disciplinary field that is focused on deciphering the causes and manifestations of genetic kidney diseases as well as providing the framework for managing patients with genetic forms of CAKUT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F (2014) Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol 29:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  2. Knoers N, Renkema KY (2019) The genomic landscape of CAKUT; you gain some, you lose some. Kidney Int 96:267–269

    Article  PubMed  Google Scholar 

  3. Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG (2018) Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest 128:4–15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vivante A, Hildebrandt F (2016) Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 12:133–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vivante A, Hildebrandt F (2016) Genetics of congenital anomalies of the kidneys and urinary tract. In: Barakat AJ, Rushton HG (eds) Congenital anomalies of the kidney and urinary tract: clinical implications in children. Springer, Cham, Switzerland, pp 303–322

    Chapter  Google Scholar 

  6. van der Ven AT, Vivante A, Hildebrandt F (2018) Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:36–50

    Article  PubMed  Google Scholar 

  7. Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu DM, Loudon KW, Vento-Tormo R, Stephenson E, Cagan A, Farndon SJ, Del Castillo V-H, Guzzo C, Richoz N, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Maxwell PH, Lindsay S, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Clatworthy M, Behjati S (2018) Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361:594–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Brien LL, Guo Q, Bahrami-Samani E, Park JS, Hasso SM, Lee YJ, Fang A, Kim AD, Guo J, Hong TM, Peterson KA, Lozanoff S, Raviram R, Ren B, Fogelgren B, Smith AD, Valouev A, McMahon AP (2018) Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet 14:e1007181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pleniceanu O, Omer D, Harari-Steinberg O, Dekel B (2018) Renal lineage cells as a source for renal regeneration. Pediatr Res 83:267–274

    Article  CAS  PubMed  Google Scholar 

  10. Stern-Zimmer M, Calderon-Margalit R, Skorecki K, Vivante A (2020) Childhood risk factors for adulthood chronic kidney disease. Pediatr Nephrol 36:1387–1396

    Article  PubMed  Google Scholar 

  11. Pleniceanu O, Harari-Steinberg O, Dekel B (2010) Concise review: Kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells 28:1649–1660

    Article  PubMed  Google Scholar 

  12. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  14. Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Viswanathan A, Dawman L, Tiewsoh K, Saxena AK, Dutta S, Suri D (2020) Screening of renal anomalies in first-degree relatives of children diagnosed with non-syndromic congenital anomalies of kidney and urinary tract. Clin Exp Nephrol 25:184–190

    Article  PubMed  Google Scholar 

  16. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H, Laube G, Delezoide AL, Bouvier R, Dijoud F, Ollagnon-Roman E, Roume J, Joubert M, Antignac C, Gubler MC (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968

    Article  CAS  PubMed  Google Scholar 

  17. Kohl S, Hwang DY, Dworschak GC, Hilger AC, Saisawat P, Vivante A, Stajic N, Bogdanovic R, Reutter HM, Kehinde EO, Tasic V, Hildebrandt F (2014) Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 25:1917–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saisawat P, Kohl S, Hilger AC, Hwang DY, Yung Gee H, Dworschak GC, Tasic V, Pennimpede T, Natarajan S, Sperry E, Matassa DS, Stajić N, Bogdanovic R, de Blaauw I, Marcelis CL, Wijers CH, Bartels E, Schmiedeke E, Schmidt D, Märzheuser S, Grasshoff-Derr S, Holland-Cunz S, Ludwig M, Nöthen MM, Draaken M, Brosens E, Heij H, Tibboel D, Herrmann BG, Solomon BD, de Klein A, van Rooij IA, Esposito F, Reutter HM, Hildebrandt F (2014) Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int 85:1310–1317

    Article  CAS  PubMed  Google Scholar 

  19. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, Tores F, Blanchet P, Perez MJ, Petrov Y, Khau Van Kien P, Roume J, Leroy B, Gribouval O, Kalaydjieva L, Heidet L, Salomon R, Antignac C, Benmerah A, Saunier S, Jeanpierre C (2014) Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet 94:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daly SB, Urquhart JE, Hilton E, McKenzie EA, Kammerer RA, Lewis M, Kerr B, Stuart H, Donnai D, Long DA, Burgu B, Aydogdu O, Derbent M, Garcia-Minaur S, Reardon W, Gener B, Shalev S, Smith R, Woolf AS, Black GC, Newman WG (2010) Mutations in HPSE2 cause urofacial syndrome. Am J Hum Genet 86:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stuart HM, Roberts NA, Burgu B, Daly SB, Urquhart JE, Bhaskar S, Dickerson JE, Mermerkaya M, Silay MS, Lewis MA, Olondriz MB, Gener B, Beetz C, Varga RE, Gülpınar O, Süer E, Soygür T, Ozçakar ZB, Yalçınkaya F, Kavaz A, Bulum B, Gücük A, Yue WW, Erdogan F, Berry A, Hanley NA, McKenzie EA, Hilton EN, Woolf AS, Newman WG (2013) LRIG2 mutations cause urofacial syndrome. Am J Hum Genet 92:259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gauthier J, Ouled Amar Bencheikh B, Hamdan FF, Harrison SM, Baker LA, Couture F, Thiffault I, Ouazzani R, Samuels ME, Mitchell GA, Rouleau GA, Michaud JL, Soucy JF (2015) A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet 23:1266–1268

    Article  CAS  PubMed  Google Scholar 

  23. Verhave JC, Bech AP, Wetzels JF, Nijenhuis T (2016) Hepatocyte nuclear factor 1β-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol 27:345–353

    Article  CAS  PubMed  Google Scholar 

  24. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C (2015) HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol 11:102–112

    Article  CAS  PubMed  Google Scholar 

  25. Bingham C, Bulman MP, Ellard S, Allen LI, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT (2001) Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68:219–224

    Article  CAS  PubMed  Google Scholar 

  26. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, Tasic V, Hildebrandt F (2014) Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 85:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagano C, Morisada N, Nozu K, Kamei K, Tanaka R, Kanda S, Shiona S, Araki Y, Ohara S, Matsumura C, Kasahara K, Mori Y, Seo A, Miura K, Washiyama M, Sugimoto K, Harada R, Tazoe S, Kourakata H, Enseki M, Aotani D, Yamada T, Sakakibara N, Yamamura T, Minamikawa S, Ishikura K, Ito S, Hattori M, Iijima K (2019) Clinical characteristics of HNF1B-related disorders in a Japanese population. Clin Exp Nephrol 23:1119–1129

    Article  CAS  PubMed  Google Scholar 

  28. Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S, Rampoldi L, Bleyer AJ (2019) Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5:60

    Article  PubMed  Google Scholar 

  29. Connaughton DM, Kennedy C, Shril S, Mann N, Murray SL, Williams PA, Conlon E, Nakayama M, van der Ven AT, Ityel H, Kause F, Kolvenbach CM, Dai R, Vivante A, Braun DA, Schneider R, Kitzler TM, Moloney B, Moran CP, Smyth JS, Kennedy A, Benson K, Stapleton C, Denton M, Magee C, O’Seaghdha CM, Plant WD, Griffin MD, Awan A, Sweeney C, Mane SM, Lifton RP, Griffin B, Leavey S, Casserly L, de Freitas DG, Holian J, Dorman A, Doyle B, Lavin PJ, Little MA, Conlon PJ, Hildebrandt F (2019) Monogenic causes of chronic kidney disease in adults. Kidney Int 95:914–928

    Article  PubMed  PubMed Central  Google Scholar 

  30. Haeri S, Devers PL, Kaiser-Rogers KA, Moylan VJ Jr, Torchia BS, Horton AL, Wolfe HM, Aylsworth AS (2010) Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome. Am J Perinatol 27:559–563

    Article  PubMed  Google Scholar 

  31. Bockenhauer D, Jaureguiberry G (2016) HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol 31:707–714

    Article  PubMed  Google Scholar 

  32. Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP, Pakula AT, Eisenhauer NJ, Uhas K, Weik L, Guy L, Care ME, Morel CF, Boni C, Salbert BA, Chandrareddy A, Demmer LA, Chow EW, Surti U, Aradhya S, Pickering DL, Golden DM, Sanger WG, Aston E, Brothman AR, Gliem TJ, Thorland EC, Ackley T, Iyer R, Huang S, Barber JC, Crolla JA, Warren ST, Martin CL, Ledbetter DH (2010) Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 87:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrè S, Igarashi P (2019) New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol 34:1325–1335

    Article  PubMed  Google Scholar 

  34. Rossanti R, Morisada N, Nozu K, Kamei K, Horinouchi T, Yamamura T, Minamikawa S, Fujimura J, Nagano C, Sakakibara N, Ninchoji T, Kaito H, Ito S, Tanaka R, Iijima K (2020) Clinical and genetic variability of PAX2-related disorder in the Japanese population. J Hum Genet 65:541–549

    Article  CAS  PubMed  Google Scholar 

  35. Madariaga L, Morinière V, Jeanpierre C, Bouvier R, Loget P, Martinovic J, Dechelotte P, Leporrier N, Thauvin-Robinet C, Jensen UB, Gaillard D, Mathieu M, Turlin B, Attie-Bitach T, Salomon R, Gübler MC, Antignac C, Heidet L (2013) Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol 8:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364

    Article  CAS  PubMed  Google Scholar 

  37. Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, Caputo V, Toka HR, Charoonratana VT, Tartaglia M, Pollak MR (2014) Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol 25:1942–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vivante A, Chacham OS, Shril S, Schreiber R, Mane SM, Pode-Shakked B, Soliman NA, Koneth I, Schiffer M, Anikster Y, Hildebrandt F (2019) Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatr Nephrol 34:1607–1613

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bower MA, Schimmenti LA, Eccles MR (1993) PAX2-Related Disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews(®). University of Washington, Seattle

  40. Chang EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, Smith RJ (2004) Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat 23:582–589

    Article  CAS  PubMed  Google Scholar 

  41. Unzaki A, Morisada N, Nozu K, Ye MJ, Ito S, Matsunaga T, Ishikura K, Ina S, Nagatani K, Okamoto T, Inaba Y, Ito N, Igarashi T, Kanda S, Ito K, Omune K, Iwaki T, Ueno K, Yahata M, Ohtsuka Y, Nishi E, Takahashi N, Ishikawa T, Goto S, Okamoto N, Iijima K (2018) Clinically diverse phenotypes and genotypes of patients with branchio-oto-renal syndrome. J Hum Genet 63:647–656

    Article  CAS  PubMed  Google Scholar 

  42. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM Jr, Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A 101:8090–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM, Orten DJ, Kimberling WJ, Smith RJ, Weil D, Petit C, Otto EA, Xu PX, Hildebrandt F (2007) Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 80:800–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krug P, Morinière V, Marlin S, Koubi V, Gabriel HD, Colin E, Bonneau D, Salomon R, Antignac C, Heidet L (2011) Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum Mutat 32:183–190

    Article  CAS  PubMed  Google Scholar 

  45. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83

    Article  CAS  PubMed  Google Scholar 

  46. Kohlhase J (1993) Townes-Brocks Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews(®). University of Washington, Seattle

  47. Weber S, Moriniere V, Knüppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiené A, Mir S, Montini G, Peco-Antic A, Wühl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  48. Bozal-Basterra L, Martín-Ruíz I, Pirone L, Liang Y, Sigurðsson JO, Gonzalez-Santamarta M, Giordano I, Gabicagogeascoa E, de Luca A, Rodríguez JA, Wilkie AOM, Kohlhase J, Eastwood D, Yale C, Olsen JV, Rauchman M, Anderson KV, Sutherland JD, Barrio R (2018) Truncated SALL1 impedes primary cilia function in Townes-Brocks syndrome. Am J Hum Genet 102:249–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406:419–422

    Article  PubMed  CAS  Google Scholar 

  50. Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, Yamamoto K, Fujimoto S, Seishu S, Fukushima Y, Hasegawa Y, Ogata T (2001) GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet 38:374–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barakat AJ, Raygada M, Rennert OM (2018) Barakat syndrome revisited. Am J Med Genet A 176:1341–1348

    Article  PubMed  Google Scholar 

  52. Lemos MC, Thakker RV (2020) Hypoparathyroidism, deafness, and renal dysplasia syndrome: 20 years after the identification of the first GATA3 mutations. Hum Mutat 41:1341–1350

    Article  CAS  PubMed  Google Scholar 

  53. Fukami M, Muroya K, Miyake T, Iso M, Kato F, Yokoi H, Suzuki Y, Tsubouchi K, Nakagomi Y, Kikuchi N, Horikawa R, Ogata T (2011) GATA3 abnormalities in six patients with HDR syndrome. Endocr J 58:117–121

    Article  CAS  PubMed  Google Scholar 

  54. Le Tanno P, Breton J, Bidart M, Satre V, Harbuz R, Ray PF, Bosson C, Dieterich K, Jaillard S, Odent S, Poke G, Beddow R, Digilio MC, Novelli A, Bernardini L, Pisanti MA, Mackenroth L, Hackmann K, Vogel I, Christensen R, Fokstuen S, Béna F, Amblard F, Devillard F, Vieville G, Apostolou A, Jouk PS, Guebre-Egziabher F, Sartelet H, Coutton C (2017) PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J Med Genet 54:502–510

    Article  PubMed  CAS  Google Scholar 

  55. Heidet L, Morinière V, Henry C, De Tomasi L, Reilly ML, Humbert C, Alibeu O, Fourrage C, Bole-Feysot C, Nitschké P, Tores F, Bras M, Jeanpierre M, Pietrement C, Gaillard D, Gonzales M, Novo R, Schaefer E, Roume J, Martinovic J, Malan V, Salomon R, Saunier S, Antignac C, Jeanpierre C (2017) Targeted exome sequencing identifies PBX1 as involved in monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 28:2901–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, Parisotto S, Herkert JC, Stegmann APA, Miller K, Shur N, Chui J, Muller E, DeBrosse S, Szot JO, Chapman G, Pachter NS, Winlaw DS, Mendelsohn BA, Dalton J, Sarafoglou K, Karachunski PI, Lewis JM, Pedro H, Dunwoodie SL, Selleri L, Shieh J (2017) De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Hum Mol Genet 26:4849–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J, Vivante A, Hwang DY, Schulz J, Braun DA, Schmidt JM, Schapiro D, Schneider R, Warejko JK, Daga A, Majmundar AJ, Tan W, Jobst-Schwan T, Hermle T, Widmeier E, Ashraf S, Amar A, Hoogstraaten CA, Hugo H, Kitzler TM, Kause F, Kolvenbach CM, Dai R, Spaneas L, Amann K, Stein DR, Baum MA, Somers MJG, Rodig NM, Ferguson MA, Traum AZ, Daouk GH, Bogdanović R, Stajić N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Al-Saffar M, Awad HS, Eid LA, Selvin A, Senguttuvan P, Sanna-Cherchi S, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Wilson MW, Mane SM, Lifton RP, Lee RS, Bauer SB, Lu W, Reutter HM, Tasic V, Shril S, Hildebrandt F (2018) Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol 29:2348–2361

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vivante A, Hwang DY, Kohl S, Chen J, Shril S, Schulz J, van der Ven A, Daouk G, Soliman NA, Kumar AS, Senguttuvan P, Kehinde EO, Tasic V, Hildebrandt F (2017) Exome sequencing discerns syndromes in patients from consanguineous families with congenital anomalies of the kidneys and urinary tract. J Am Soc Nephrol 28:69–75

    Article  CAS  PubMed  Google Scholar 

  59. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, Nees SN, Verbitsky M, Perry BJ, Sterken R, Lozanovski VJ, Materna-Kiryluk A, Barlassina C, Kini A, Corbani V, Carrea A, Somenzi D, Murtas C, Ristoska-Bojkovska N, Izzi C, Bianco B, Zaniew M, Flogelova H, Weng PL, Kacak N, Giberti S, Gigante M, Arapovic A, Drnasin K, Caridi G, Curioni S, Allegri F, Ammenti A, Ferretti S, Goj V, Bernardo L, Jobanputra V, Chung WK, Lifton RP, Sanders S, State M, Clark LN, Saraga M, Padmanabhan S, Dominiczak AF, Foroud T, Gesualdo L, Gucev Z, Allegri L, Latos-Bielenska A, Cusi D, Scolari F, Tasic V, Hakonarson H, Ghiggeri GM, Gharavi AG (2012) Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 91:987–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Westland R, Verbitsky M, Vukojevic K, Perry BJ, Fasel DA, Zwijnenburg PJ, Bökenkamp A, Gille JJ, Saraga-Babic M, Ghiggeri GM, D’Agati VD, Schreuder MF, Gharavi AG, van Wijk JA, Sanna-Cherchi S (2015) Copy number variation analysis identifies novel CAKUT candidate genes in children with a solitary functioning kidney. Kidney Int 88:1402–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caruana G, Wong MN, Walker A, Heloury Y, Webb N, Johnstone L, James PA, Burgess T, Bertram JF (2015) Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 30:487–495

    Article  PubMed  Google Scholar 

  62. Cai M, Lin N, Su L, Wu X, Xie X, Li Y, Chen X, Dai Y, Lin Y, Huang H, Xu L (2020) Detection of copy number disorders associated with congenital anomalies of the kidney and urinary tract in fetuses via single nucleotide polymorphism arrays. J Clin Lab Anal 34:e23025

    PubMed  Google Scholar 

  63. Verbitsky M, Westland R, Perez A, Kiyluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, Bodria M, Werth M, Kao C, Martino J, Capone VP, Vivante A, Shril S, Kil BH, Marasà M, Zhang JY, Na YJ, Lim TY, Ahram D, Weng PL, Heinzen EL, Carrea A, Piaggio G, Gesualdo L, Manca V, Masnata G, Gigante M, Cusi D, Izzi C, Scolari F, van Wijk JAE, Saraga M, Santoro D, Conti G, Zamboli P, White H, Drozdz D, Zachwieja K, Miklaszewska M, Tkaczyk M, Tomczyk D, Krakowska A, Sikora P, Jarmoliński T, Borszewska-Kornacka MK, Pawluch R, Szczepanska M, Adamczyk P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Dobson MG, Darlow JM, Puri P, Barton DE, Furth SL, Warady BA, Gucev Z, Lozanovski VJ, Tasic V, Pisani I, Allegri L, Rodas LM, Campistol JM, Jeanpierre C, Alam S, Casale P, Wong CS, Lin F, Miranda DM, Oliveira EA, Simões ESAC, Barasch JM, Levy B, Wu N, Hildebrandt F, Ghiggeri GM, Latos-Bielenska A, Materna-Kiryluk A, Zhang F, Hakonarson H, Papaioannou VE, Mendelsohn CL, Gharavi AG, Sanna-Cherchi S (2019) The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 51:117–127

    Article  CAS  PubMed  Google Scholar 

  64. Lopez-Rivera E, Liu YP, Verbitsky M, Anderson BR, Capone VP, Otto EA, Yan Z, Mitrotti A, Martino J, Steers NJ, Fasel DA, Vukojevic K, Deng R, Racedo SE, Liu Q, Werth M, Westland R, Vivante A, Makar GS, Bodria M, Sampson MG, Gillies CE, Vega-Warner V, Maiorana M, Petrey DS, Honig B, Lozanovski VJ, Salomon R, Heidet L, Carpentier W, Gaillard D, Carrea A, Gesualdo L, Cusi D, Izzi C, Scolari F, van Wijk JA, Arapovic A, Saraga-Babic M, Saraga M, Kunac N, Samii A, McDonald-McGinn DM, Crowley TB, Zackai EH, Drozdz D, Miklaszewska M, Tkaczyk M, Sikora P, Szczepanska M, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Darlow JM, Puri P, Barton D, Casolari E, Furth SL, Warady BA, Gucev Z, Hakonarson H, Flogelova H, Tasic V, Latos-Bielenska A, Materna-Kiryluk A, Allegri L, Wong CS, Drummond IA, D’Agati V, Imamoto A, Barasch JM, Hildebrandt F, Kiryluk K, Lifton RP, Morrow BE, Jeanpierre C, Papaioannou VE, Ghiggeri GM, Gharavi AG, Katsanis N, Sanna-Cherchi S (2017) Genetic Drivers of kidney defects in the DiGeorge syndrome. N Engl J Med 376:742–754

  65. Krishnan A, de Souza A, Konijeti R, Baskin LS (2006) The anatomy and embryology of posterior urethral valves. J Urol 175:1214–1220

    Article  PubMed  Google Scholar 

  66. Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, Shril S, Hwang DY, Weiss AC, Kaminski MM, Shukrun R, Kemper MJ, Lehnhardt A, Beetz R, Sanna-Cherchi S, Verbitsky M, Gharavi AG, Stuart HM, Feather SA, Goodship JA, Goodship TH, Woolf AS, Westra SJ, Doody DP, Bauer SB, Lee RS, Adam RM, Lu W, Reutter HM, Kehinde EO, Mancini EJ, Lifton RP, Tasic V, Lienkamp SS, Jüppner H, Kispert A, Hildebrandt F (2015) Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am J Hum Genet 97:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wangler MF, Gonzaga-Jauregui C, Gambin T, Penney S, Moss T, Chopra A, Probst FJ, Xia F, Yang Y, Werlin S, Eglite I, Kornejeva L, Bacino CA, Baldridge D, Neul J, Lehman EL, Larson A, Beuten J, Muzny DM, Jhangiani S, Gibbs RA, Lupski JR, Beaudet A (2014) Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet 10:e1004258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mann N, Kause F, Henze EK, Gharpure A, Shril S, Connaughton DM, Nakayama M, Klämbt V, Majmundar AJ, Wu CW, Kolvenbach CM, Dai R, Chen J, van der Ven AT, Ityel H, Tooley MJ, Kari JA, Bownass L, El Desoky S, De Franco E, Shalaby M, Tasic V, Bauer SB, Lee RS, Beckel JM, Yu W, Mane SM, Lifton RP, Reutter H, Ellard S, Hibbs RE, Kawate T, Hildebrandt F (2019) CAKUT and autonomic dysfunction caused by acetylcholine receptor mutations. Am J Hum Genet 105:1286–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weber S, Thiele H, Mir S, Toliat MR, Sozeri B, Reutter H, Draaken M, Ludwig M, Altmüller J, Frommolt P, Stuart HM, Ranjzad P, Hanley NA, Jennings R, Newman WG, Wilcox DT, Thiel U, Schlingmann KP, Beetz R, Hoyer PF, Konrad M, Schaefer F, Nürnberg P, Woolf AS (2011) Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am J Hum Genet 89:668–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolvenbach CM, Dworschak GC, Frese S, Japp AS, Schuster P, Wenzlitschke N, Yilmaz Ö, Lopes FM, Pryalukhin A, Schierbaum L, van der Zanden LFM, Kause F, Schneider R, Taranta-Janusz K, Szczepańska M, Pawlaczyk K, Newman WG, Beaman GM, Stuart HM, Cervellione RM, Feitz WFJ, van Rooij I, Schreuder MF, Steffens M, Weber S, Merz WM, Feldkötter M, Hoppe B, Thiele H, Altmüller J, Berg C, Kristiansen G, Ludwig M, Reutter H, Woolf AS, Hildebrandt F, Grote P, Zaniew M, Odermatt B, Hilger AC (2019) Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction. Am J Hum Genet 104:994–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boghossian NS, Sicko RJ, Kay DM, Rigler SL, Caggana M, Tsai MY, Yeung EH, Pankratz N, Cole BR, Druschel CM, Romitti PA, Browne ML, Fan R, Liu A, Brody LC, Mills JL (2016) Rare copy number variants implicated in posterior urethral valves. Am J Med Genet A 170:622–633

    Article  CAS  PubMed  Google Scholar 

  72. Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K, Deltas C, Hosking A, Kmoch S, Rampoldi L, Wiesener M, Wolf MT, Devuyst O (2015) Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management–A KDIGO consensus report. Kidney Int 88:676–683

    Article  CAS  PubMed  Google Scholar 

  74. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, Conrad DF, Cooper GM, Cox NJ, Daly MJ, Gerstein MB, Goldstein DB, Hirschhorn JN, Leal SM, Pennacchio LA, Stamatoyannopoulos JA, Sunyaev SR, Valle D, Voight BF, Winckler W, Gunter C (2014) Guidelines for investigating causality of sequence variants in human disease. Nature 508:469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas CP, Freese ME, Ounda A, Jetton JG, Holida M, Noureddine L, Smith RJ (2020) Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genet Med 22:1025–1035

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jayasinghe K, Quinlan C, Stark Z, Patel C, Mallawaarachchi A, Wardrop L, Kerr PG, Trnka P, Mallett AJ (2019) Renal genetics in Australia: kidney medicine in the genomic age. Nephrology (Carlton) 24:279–286

    Article  Google Scholar 

  77. Mallett A, Corney C, McCarthy H, Alexander SI, Healy H (2015) Genomics in the renal clinic - translating nephrogenetics for clinical practice. Hum Genomics 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Connaughton DM, Dai R, Owen DJ, Marquez J, Mann N, Graham-Paquin AL, Nakayama M, Coyaud E, Laurent EMN, St-Germain JR, Blok LS, Vino A, Klämbt V, Deutsch K, Wu CW, Kolvenbach CM, Kause F, Ottlewski I, Schneider R, Kitzler TM, Majmundar AJ, Buerger F, Onuchic-Whitford AC, Youying M, Kolb A, Salmanullah D, Chen E, van der Ven AT, Rao J, Ityel H, Seltzsam S, Rieke JM, Chen J, Vivante A, Hwang DY, Kohl S, Dworschak GC, Hermle T, Alders M, Bartolomaeus T, Bauer SB, Baum MA, Brilstra EH, Challman TD, Zyskind J, Costin CE, Dipple KM, Duijkers FA, Ferguson M, Fitzpatrick DR, Fick R, Glass IA, Hulick PJ, Kline AD, Krey I, Kumar S, Lu W, Marco EJ, Wentzensen IM, Mefford HC, Platzer K, Povolotskaya IS, Savatt JM, Shcherbakova NV, Senguttuvan P, Squire AE, Stein DR, Thiffault I, Voinova VY, Somers MJG, Ferguson MA, Traum AZ, Daouk GH, Daga A, Rodig NM, Terhal PA, van Binsbergen E, Eid LA, Tasic V, Rasouly HM, Lim TY, Ahram DF, Gharavi AG, Reutter HM, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Lifton RP, Xu H, Mane SM, Sanna-Cherchi S, Sharrocks AD, Raught B, Fisher SE, Bouchard M, Khokha MK, Shril S, Hildebrandt F (2020) Mutations of the transcriptional corepressor ZMYM2 cause syndromic urinary tract malformations. Am J Hum Genet 107:727–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kitzler TM, Schneider R, Kohl S, Kolvenbach CM, Connaughton DM, Dai R, Mann N, Nakayama M, Majmundar AJ, Wu CW, Kari JA, El Desoky SM, Senguttuvan P, Bogdanovic R, Stajic N, Valivullah Z, Lek M, Mane S, Lifton RP, Tasic V, Shril S, Hildebrandt F (2019) COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans. Hum Genet 138:1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Calderon-Margalit R, Efron G, Pleniceanu O, Tzur D, Stern-Zimmer M, Afek A, Erlich T, Derazne E, Kark JD, Keinan-Boker L, Twig G, Vivante A (2021) Congenital anomalies of the kidney and urinary tract and adulthood risk of urinary tract cancer. Kidney Int Rep 6:946–952

    Article  PubMed  PubMed Central  Google Scholar 

  81. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Lopes SM, Little MH (2016) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536:238

    Article  CAS  PubMed  Google Scholar 

  82. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  84. Nam SA, Seo E, Kim JW, Kim HW, Kim HL, Kim K, Kim TM, Ju JH, Gomez IG, Uchimura K, Humphreys BD, Yang CW, Lee JY, Kim J, Cho DW, Freedman BS, Kim YK (2019) Graft immaturity and safety concerns in transplanted human kidney organoids. Exp Mol Med 51:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A (2019) Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 10:5462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD (2018) Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23:869-881.e868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dvela-Levitt M, Kost-Alimova M, Emani M, Kohnert E, Thompson R, Sidhom EH, Rivadeneira A, Sahakian N, Roignot J, Papagregoriou G, Montesinos MS, Clark AR, McKinney D, Gutierrez J, Roth M, Ronco L, Elonga E, Carter TA, Gnirke A, Melanson M, Hartland K, Wieder N, Hsu JC, Deltas C, Hughey R, Bleyer AJ, Kmoch S, Živná M, Barešova V, Kota S, Schlondorff J, Heiman M, Alper SL, Wagner F, Weins A, Golub TR, Lander ES, Greka A (2019) Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178:521-535.e523

    Article  CAS  PubMed  Google Scholar 

  88. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, McKee MD, Schiermeier A, Harari O, Murphy A, Kyratsous CA, Zambrowicz B, Soltys R, Gutstein DE, Leonard J, Sepp-Lorenzino L, Lebwohl D (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385:493–502

  89. Ishiwa S, Sato M, Morisada N, Nishi K, Kanamori T, Okutsu M, Ogura M, Sako M, Kosuga M, Kamei K, Ito S, Nozu K, Iijima K, Ishikura K (2019) Association between the clinical presentation of congenital anomalies of the kidney and urinary tract (CAKUT) and gene mutations: an analysis of 66 patients at a single institution. Pediatr Nephrol 34:1457–1464

    Article  PubMed  Google Scholar 

  90. Saisawat P, Tasic V, Vega-Warner V, Kehinde EO, Günther B, Airik R, Innis JW, Hoskins BE, Hoefele J, Otto EA, Hildebrandt F (2012) Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 81:196–200

    Article  CAS  PubMed  Google Scholar 

  91. Lei TY, Fu F, Li R, Wang D, Wang RY, Jing XY, Deng Q, Li ZZ, Liu ZQ, Yang X, Li DZ, Liao C (2017) Whole-exome sequencing for prenatal diagnosis of fetuses with congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 32:1665–1675

    Article  CAS  PubMed  Google Scholar 

  92. Nicolaou N, Pulit SL, Nijman IJ, Monroe GR, Feitz WF, Schreuder MF, van Eerde AM, de Jong TP, Giltay JC, van der Zwaag B, Havenith MR, Zwakenberg S, van der Zanden LF, Poelmans G, Cornelissen EA, Lilien MR, Franke B, Roeleveld N, van Rooij IA, Cuppen E, Bongers EM, Giles RH, Knoers NV, Renkema KY (2016) Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int 89:476–486

    Article  CAS  PubMed  Google Scholar 

  93. Ahn YH, Lee C, Kim NKD, Park E, Kang HG, Ha IS, Park WY, Cheong HI (2020) Targeted exome sequencing provided comprehensive genetic diagnosis of congenital anomalies of the kidney and urinary tract. J Clin Med 9:751

    Article  CAS  PubMed Central  Google Scholar 

  94. Bernier R, Steinman KJ, Reilly B, Wallace AS, Sherr EH, Pojman N, Mefford HC, Gerdts J, Earl R, Hanson E, Goin-Kochel RP, Berry L, Kanne S, Snyder LG, Spence S, Ramocki MB, Evans DW, Spiro JE, Martin CL, Ledbetter DH, Chung WK (2016) Clinical phenotype of the recurrent 1q21.1 copy-number variant. Genet Med 18:341–349

    Article  PubMed  Google Scholar 

  95. Groopman EE, Povysil G, Goldstein DB, Gharavi AG (2020) Rare genetic causes of complex kidney and urological diseases. Nat Rev Nephrol 16:641–656

    Article  PubMed  PubMed Central  Google Scholar 

  96. Allach El Khattabi L, Heide S, Caberg JH, Andrieux J, Doco Fenzy M, Vincent-Delorme C, Callier P, Chantot-Bastaraud S, Afenjar A, Boute-Benejean O, Cordier MP, Faivre L, Francannet C, Gerard M, Goldenberg A, Masurel-Paulet A, Mosca-Boidron AL, Marle N, Moncla A, Le Meur N, Mathieu-Dramard M, Plessis G, Lesca G, Rossi M, Edery P, Delahaye-Duriez A, De Pontual L, Tabet AC, Lebbar A, Suiro L, Ioos C, Natiq A, Chafai Elalaoui S, Missirian C, Receveur A, François-Fiquet C, Garnier P, Yardin C, Laroche C, Vago P, Sanlaville D, Dupont JM, Benzacken B, Pipiras E (2020) 16p13.11 microduplication in 45 new patients: refined clinical significance and genotype-phenotype correlations. J Med Genet 57:301–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Figures 1 and 2 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Vivante.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Dr. Vivante is supported by an ISF – Clinical Scientist Grant (grant number: No. 2773/19).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, M., Pleniceanu, O. & Vivante, A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 37, 2231–2243 (2022). https://doi.org/10.1007/s00467-021-05420-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05420-1

Keywords

Navigation