Tecklenborg J, Clayton D, Siebert S, Coley SM (2018) The role of the immune system in kidney disease. Clin Exp Immunol 192:142–150
CAS
PubMed
PubMed Central
Google Scholar
(2013) Introduction to Volume One: 2012 USRDS Annual Data Report Atlas of Chronic Kidney Disease in the United States. Am J Kidney Dis 61(Suppl 1):e1-e22
Inokoshi Y, Tanino Y, Wang X, Sato S, Fukuhara N, Nikaido T, Fukuhara A, Saito J, Frevert CW, Munakata M (2013) Clinical significance of serum hyaluronan in chronic fibrotic interstitial pneumonia. Respirology 18:1236–1243
PubMed
Google Scholar
Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T (2016) Hyaluronic acid in inflammation and tissue regeneration. Wounds 28:78–88
PubMed
Google Scholar
Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM (2006) High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthr Cartil 14:1237–1247
Google Scholar
Nagy N, Sunkari VG, Kaber G, Hasbun S, Lam DN, Speake C, Sanda S, McLaughline TL, Wight TN, Long SR, Bollykya PL (2019) Hyaluronan levels are increased systemically in human type 2 but not type 1 diabetes independently of glycemic control. Matrix Biol 80:46–58
CAS
PubMed
Google Scholar
Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA (2015) The content and size of hyaluronan in biological fluids and tissues. Front Immunol 6:261
PubMed
PubMed Central
Google Scholar
Cyphert JM, Trempus CS, Garantziotis S (2015) Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol 2015:563818
PubMed
PubMed Central
Google Scholar
Evanko SP, Tammi MI, Tammi RH, Wight TN (2007) Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 59:1351–1365
CAS
PubMed
PubMed Central
Google Scholar
Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092
CAS
PubMed
Google Scholar
Törrönen K, Nikunen K, Kärnä R, Tammi M, Tammi R, Rilla K (2014) Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem Cell Biol 141:17–31
PubMed
Google Scholar
Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360
CAS
PubMed
PubMed Central
Google Scholar
Siiskonen H, Oikari S, Pasonen-Seppänen S, Rilla K (2015) Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front Immunol 6:43
PubMed
PubMed Central
Google Scholar
Liang J, Jiang D, Noble PW (2016) Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 97:186–203
CAS
PubMed
Google Scholar
Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20:499–508
CAS
PubMed
Google Scholar
Colombaro V, Jadot I, Declèves AE, Voisin V, Giordano L, Habsch I, Flamion B, Caron N (2015) Hyaluronidase 1 and hyaluronidase 2 are required for renal hyaluronan turnover. Acta Histochem 117:83–91
CAS
PubMed
Google Scholar
Chowdhury B, Xiang B, Liu M, Hemming R, Dolinsky VW, Triggs-Raine B (2017) Hyaluronidase 2 deficiency causes increased mesenchymal cells, congenital heart defects, and heart failure. Circ Cardiovasc Genet 10:e001598
CAS
PubMed
PubMed Central
Google Scholar
Chowdhury B, Hemming R, Hombach-Klonisch S, Flamion B, Triggs-Raine B (2013) Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. J Biol Chem 288:520–528
CAS
PubMed
Google Scholar
Balaji S, Wang X, King A, Le LD, Bhattacharya SS, Moles CM, Butte MJ, de Jesus Perez VA, Liechty KW, Wight TN, Crombleholme TM, Bollyky PL, Keswani SG (2017) Interleukin-10-mediated regenerative postnatal tissue repair is dependent on regulation of hyaluronan metabolism via fibroblast-specific STAT3 signaling. FASEB J 31:868–881
CAS
PubMed
Google Scholar
Bollyky PL, Bogdani M, Bollyky JB, Hull RL, Wight TN (2012) The role of hyaluronan and the extracellular matrix in islet inflammation and immune regulation. Curr Diab Rep 12:471–480
CAS
PubMed
PubMed Central
Google Scholar
Finke B, Stahl B, Pfenninger A, Karas M, Daniel H, Sawatzki G (1999) Analysis of high-molecular-weight oligosaccharides from human milk by liquid chromatography and MALDI-MS. Anal Chem 71:3755–3762
CAS
PubMed
Google Scholar
Wang X, Balaji S, Steen EH, Blum AJ, Li H, Chan CK, Manson SR, Lu TC, Rae MM, Austin PF, Wight TN, Bollyky PL, Cheng J, Keswani SG (2020) High molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight 5:e136345
PubMed Central
Google Scholar
Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, Bollyky PL (2015) 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol 6:123
PubMed
PubMed Central
Google Scholar
Armstrong SE, Bell DR (2002) Measurement of high-molecular-weight hyaluronan in solid tissue using agarose gel electrophoresis. Anal Biochem 308:255–264
CAS
PubMed
Google Scholar
Galeano M, Polito F, Bitto A, Irrera N, Campo GM, Avenoso A, Calò M, Lo Cascio P, Minutoli L, Barone M, Squadrito F, Altavilla D (2011) Systemic administration of high-molecular weight hyaluronan stimulates wound healing in genetically diabetic mice. Biochim Biophys Acta 1812:752–759
CAS
PubMed
Google Scholar
Vistejnova L, Safrankova B, Nesporova K, Slavkovsky R, Hermannova M, Hosek P, Velebny V, Kubala L (2014) Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response. Cytokine 70:97–103
CAS
PubMed
Google Scholar
Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, Cavicchini S, Balsari A, Rumio C (2008) Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol 181:2103–2110
CAS
PubMed
Google Scholar
Gao Y, Sun Y, Yang H, Qiu P, Cong Z, Zou Y, Song L, Guo J, Anastassiades TP (2019) A low molecular weight hyaluronic acid derivative accelerates excisional wound healing by modulating pro-inflammation, promoting epithelialization and neovascularization, and remodeling collagen. Int J Mol Sci 20:3722
CAS
PubMed Central
Google Scholar
Liu M, Tolg C, Turley E (2019) Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front Immunol 10:947
CAS
PubMed
PubMed Central
Google Scholar
Avenoso A, Bruschetta G, D'Ascola A, Scuruchi M, Mandraffino G, Gullace R, Saitta A, Campo S, Campo GM (2019) Hyaluronan fragments produced during tissue injury: a signal amplifying the inflammatory response. Arch Biochem Biophys 663:228–238
CAS
PubMed
Google Scholar
Dasu MR, Thangappan RK, Bourgette A, DiPietro LA, Isseroff R, Jialal I (2010) TLR2 expression and signaling-dependent inflammation impair wound healing in diabetic mice. Lab Investig 90:1628–1636
CAS
PubMed
Google Scholar
Qadri M, Almadani S, Jay GD, Elsaid KA (2018) Role of CD44 in regulating TLR2 activation of human macrophages and downstream expression of proinflammatory cytokines. J Immunol 200:758–767
CAS
PubMed
Google Scholar
Ruffell B, Johnson P (2008) Hyaluronan induces cell death in activated T cells through CD44. J Immunol 181:7044–7054
CAS
PubMed
Google Scholar
Suleiman M, Abdulrahman N, Yalcin H, Mraiche F (2018) The role of CD44, hyaluronan and NHE1 in cardiac remodeling. Life Sci 209:197–201
CAS
PubMed
Google Scholar
Govindaraju P, Todd L, Shetye S, Monslow J, Puré E (2019) CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol 75-76:314–330
CAS
PubMed
Google Scholar
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL (2019) Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 78-79:292–313
CAS
PubMed
Google Scholar
Jackson DG (2019) Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 78-79:219–235
CAS
PubMed
Google Scholar
Garantziotis S, Savani RC (2019) Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol 78-79:1–10
CAS
PubMed
PubMed Central
Google Scholar
He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 284:20136–42016
CAS
PubMed
PubMed Central
Google Scholar
Abaskharoun M, Bellemare M, Lau E, Margolis RU (2010) Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 1327:6–15
CAS
PubMed
PubMed Central
Google Scholar
Ito T, Williams JD, Al-Assaf S, Phillips GO, Phillips AO (2004) Hyaluronan and proximal tubular cell migration. Kidney Int 65:823–833
CAS
PubMed
Google Scholar
Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834
CAS
PubMed
Google Scholar
Levey AS, Coresh J (2012) Chronic kidney disease. Lancet 379:165–180
PubMed
Google Scholar
Albeiroti S, Soroosh A, de la Motte CA (2015) Hyaluronan's role in fibrosis: a pathogenic factor or a passive player? Biomed Res Int 2015:790203
PubMed
PubMed Central
Google Scholar
Tampe B, Steinle U, Tampe D, Carstens JL, Korsten P, Zeisberg EM, Müller GA, Kalluri R, Zeisberg M (2017) Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int 91:157–176
CAS
PubMed
Google Scholar
Declèves AE, Caron N, Voisin V, Legrand A, Bouby N, Kultti A, Tammi MI, Flamion B (2012) Synthesis and fragmentation of hyaluronan in renal ischaemia. Nephrol Dial Transplant 27:3771–3781
PubMed
Google Scholar
Colombaro V, Declèves AE, Jadot I, Voisin V, Giordano L, Habsch I, Nonclercq D, Flamion B, Caron N (2013) Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol Dial Transplant 28:2484–2493
CAS
PubMed
Google Scholar
van den Berg BM, Wang G, Boels MGS, Avramut MC, Jansen E, Sol WMPJ, Lebrin F, van Zonneveld AJ, de Koning EJP, Vink H, Gröne HJ, Carmeliet P, van der Vlag J, Rabelink TJ (2019) Glomerular function and structural integrity depend on hyaluronan synthesis by glomerular endothelium. J Am Soc Nephrol 30:1886–1897
PubMed
PubMed Central
Google Scholar
Campo GM, Avenoso A, Micali A, Nastasi G, Squadrito F, Altavilla D, Bitto A, Polito F, Rinaldi MG, Calatroni A, D'Ascola A, Campo S (2010) High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice. Biochim Biophys Acta 1802:1118–1130
CAS
PubMed
Google Scholar
Jones S, Jones S, Phillips AO (2001) Regulation of renal proximal tubular epithelial cell hyaluronan generation: implications for diabetic nephropathy. Kidney Int 59:1739–1749
CAS
PubMed
Google Scholar
Sano N, Kitazawa K, Sugisaki T (2001) Localization and roles of CD44, hyaluronic acid and osteopontin in IgA nephropathy. Nephron 89:416–421
CAS
PubMed
Google Scholar
Nakamura H, Kitazawa K, Honda H, Sugisaki T (2005) Roles of and correlation between alpha-smooth muscle actin, CD44, hyaluronic acid and osteopontin in crescent formation in human glomerulonephritis. Clin Nephrol 64:401–411
CAS
PubMed
Google Scholar
Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D'Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647
PubMed
Google Scholar
Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166
CAS
PubMed
Google Scholar
Asselman M, Verhulst A, Van Ballegooijen ES, Bangma CH, Verkoelen CF, De Broe ME (2005) Hyaluronan is apically secreted and expressed by proliferating or regenerating renal tubular cells. Kidney Int 68:71–83
CAS
PubMed
Google Scholar
Rostved AA, Ostrowski SR, Peters L, Lundgren JD, Hillingsø J, Johansson PI, Rasmussen A (2018) Hyaluronic acid is a biomarker for allograft dysfunction and predicts 1-year graft loss after liver transplantation. Transplant Proc 50:3635–3643
CAS
PubMed
Google Scholar
Wells A, Larsson E, Hanás E, Laurent T, Hällgren R, Tufveson G (1993) Increased hyaluronan in acutely rejecting human kidney grafts. Transplantation 55:1346–1349
CAS
PubMed
Google Scholar
Pichler R, Buttazzoni A, Rehder P, Bartsch G, Steiner H, Oswald J (2011) Endoscopic application of dextranomer/hyaluronic acid copolymer in the treatment of vesico-ureteric reflux after renal transplantation. BJU Int 107:1967–1972
PubMed
Google Scholar
Rouschop KM, Sewnath ME, Claessen N, Roelofs JJ, Hoedemaeker I, van der Neut R, Aten J, Pals ST, Weening JJ, Florquin S (2004) CD44 deficiency increases tubular damage but reduces renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 15:674–686
CAS
PubMed
Google Scholar
Eymael J, Sharma S, Loeven MA, Wetzels JF, Mooren F, Florquin S, Deegens JK, Willemsen BK, Sharma V, van Kuppevelt TH, Bakker MA, Ostendorf T, Moeller MJ, Dijkman HB, Smeets B, van der Vlag J (2018) CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis. Kidney Int 93:626–642
CAS
PubMed
Google Scholar
Midgley AC, Duggal L, Jenkins R, Hascall V, Steadman R, Phillips AO, Meran S (2015) Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 290:11218–11234
CAS
PubMed
PubMed Central
Google Scholar
Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903
CAS
PubMed
PubMed Central
Google Scholar
Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH, Wygrecka M, Schaefer L (2018) Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 68-69:293–317
CAS
PubMed
Google Scholar
Göransson V, Johnsson C, Jacobson A, Heldin P, Hällgren R, Hansell P (2004) Renal hyaluronan accumulation and hyaluronan synthase expression after ischaemia-reperfusion injury in the rat. Nephrol Dial Transplant 19:823–830
PubMed
Google Scholar
Michael DR, Phillips AO, Krupa A, Martin J, Redman JE, Altaher A, Neville RD, Webber J, Kim MY, Bowen T (2011) The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 286:19523–19532
CAS
PubMed
PubMed Central
Google Scholar
Colombaro V, Jadot I, Declèves AE, Voisin V, Giordano L, Habsch I, Malaisse J, Flamion B, Caron N (2015) Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int 88:61–71
CAS
PubMed
Google Scholar
Hsu RK, Hsu CY (2016) The role of acute kidney injury in chronic kidney disease. Semin Nephrol 36:283–292
PubMed
PubMed Central
Google Scholar
Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373
PubMed
Google Scholar
Han DH, Song HK, Lee SY, Song JH, Piao SG, Yoon HE, Ghee JY, Yoon HJ, Kim J, Yang CW (20100 Upregulation of hyaluronan and its binding receptors in an experimental model of chronic cyclosporine nephropathy. Nephrology (Carlton) 15:216-224
Akin D, Ozmen S, Yilmaz ME (2017) Hyaluronic acid as a new biomarker to differentiate acute kidney injury from chronic kidney disease. Iran J Kidney Dis 11:409–413
PubMed
Google Scholar
Johnsson C, Hällgren R, Wahlberg J, Tufveson G (1997) Renal accumulation and distribution of hyaluronan after ureteral obstruction. Scand J Urol Nephrol 31:327–331
CAS
PubMed
Google Scholar
Lamontagne CA, Plante GE, Grandbois M (2011) Characterization of hyaluronic acid interaction with calcium oxalate crystals: implication of crystals faces, pH and citrate. J Mol Recognit 24:733–740
CAS
PubMed
Google Scholar
Lewis A, Steadman R, Manley P, Craig K, de la Motte C, Hascall V, Phillips AO (2008) Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. Histol Histopathol 23:731–739
PubMed
Google Scholar
Stridh S, Palm F, Hansell P (2012) Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Phys Regul Integr Comp Phys 302:R1235–R1249
CAS
Google Scholar
Pettitt DJ, Talton J, Dabelea D, Divers J, Imperatore G, Lawrence JM, Liese AD, Linder B, Mayer-Davis EJ, Pihoker C, Saydah SH, Standiford DA, Hamman RF, SEARCH for Diabetes in Youth Study Group (2014) Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care 37:402–408
PubMed
PubMed Central
Google Scholar
Pourghasem M, Nasiri E, Sum S, Shafi H (2013) The assessment of early glycosaminoglycan concentration changes in the kidney of diabetic rats by critical electrolyte concentration staining. Int J Mol Cell Med 2:58–63
PubMed
PubMed Central
Google Scholar
Rodrigues JC, Haas M, Reich HN (2017) IgA nephropathy. Clin J Am Soc Nephrol 12:677–686
CAS
PubMed
PubMed Central
Google Scholar
Mak RH, Kuo HJ (2003) Primary ureteral reflux: emerging insights from molecular and genetic studies. Curr Opin Pediatr 15:181–185
PubMed
Google Scholar
Bundy DG (2007) Vesicoureteral reflux. Pediatr Rev 28:e6–e8 discussion e8
PubMed
Google Scholar
Kajbafzadeh AM, Tourchi A, Ebadi M (2013) The outcome of initial endoscopic treatment in the management of concomitant vesicoureteral reflux and ureteropelvic junction obstruction. Urology 81:1040–1045
PubMed
Google Scholar
Blais AS, Morin F, Cloutier J, Moore K, Bolduc S (2015) Efficacy of dextranomer hyaluronic acid and polyacrylamide hydrogel in endoscopic treatment of vesicoureteral reflux: a comparative study. Can Urol Assoc J 9:202–206
PubMed
PubMed Central
Google Scholar
Elmore JM, Kirsch AJ, Heiss EA, Gilchrist A, Scherz HC (2008) Incidence of urinary tract infections in children after successful ureteral reimplantation versus endoscopic dextranomer/hyaluronic acid implantation. J Urol 179:2364–2367 discussion 2367-2368
PubMed
Google Scholar
Karousou E, Misra S, Ghatak S, Dobra K, Götte M, Vigetti D, Passi A, Karamanos NK, Skandalis SS (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3–22
CAS
PubMed
Google Scholar
Wells AF, Larsson E, Tengblad A, Fellström B, Tufveson G, Klareskog L, Laurent TC (1990) The localization of hyaluronan in normal and rejected human kidneys. Transplantation 50:240–243
CAS
PubMed
Google Scholar
Hansell P, Göransson V, Odlind C, Gerdin B, Hällgren R (2000) Hyaluronan content in the kidney in different states of body hydration. Kidney Int 58:2061–2068
CAS
PubMed
Google Scholar