Skip to main content

Advertisement

Log in

Mechanisms and management of edema in pediatric nephrotic syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Edema is the abnormal accumulation of fluid in the interstitial compartment of tissues within the body. In nephrotic syndrome, edema is often seen in dependent areas such as the legs, but it can progress to cause significant accumulation in other areas leading to pulmonary edema, ascites, and/or anasarca. In this review, we focus on mechanisms and management of edema in children with nephrotic syndrome. We review the common mechanisms of edema, its burden in pediatric patients, and then present our approach and algorithm for management of edema in pediatric patients. The extensive body of experience accumulated over the last 5 decades means that there are many options, and clinicians may choose among these options based on their experience and careful monitoring of responses in individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eknoyan G (1997) A history of edema and its management. Kidney Int Suppl 59:S118–S126

    CAS  PubMed  Google Scholar 

  2. Pal A, Kaskel F (2016) History of nephrotic syndrome and evolution of its treatment. Front Pediatr 4:56. https://doi.org/10.3389/fped.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gipson DS, Selewski DT, Massengill SF, Wickman L, Messer KL, Herreshoff E, Bowers C, Ferris ME, Mahan JD, Greenbaum LA, MacHardy J, Kapur G, Chand DH, Goebel J, Barletta GM, Geary D, Kershaw DB, Pan CG, Gbadegesin R, Hidalgo G, Lane JC, Leiser JD, Plattner BW, Song PX, Thissen D, Liu Y, Gross HE, DeWalt DA (2013) Gaining the PROMIS perspective from children with nephrotic syndrome: a Midwest pediatric nephrology consortium study. Health Qual Life Outcomes 11:30. https://doi.org/10.1186/1477-7525-11-30

    Article  PubMed  PubMed Central  Google Scholar 

  4. Selewski DT, Troost JP, Massengill SF, Gbadegesin RA, Greenbaum LA, Shatat IF, Cai Y, Kapur G, Hebert D, Somers MJ, Trachtman H, Pais P, Seifert ME, Goebel J, Sethna CB, Mahan JD, Gross HE, Herreshoff E, Liu Y, Song PX, Reeve BB, DeWalt DA, Gipson DS (2015) The impact of disease duration on quality of life in children with nephrotic syndrome: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 30:1467–1476. https://doi.org/10.1007/s00467-015-3074-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rheault MN, Zhang L, Selewski DT, Kallash M, Tran CL, Seamon M, Katsoufis C, Ashoor I, Hernandez J, Supe-Markovina K, D'Alessandri-Silva C, De Jesus-Gonzalez N, Vasylyeva TL, Formeck C, Woll C, Gbadegesin R, Geier P, Devarajan P, Carpenter SL, Kerlin BA, Smoyer WE, Midwest Pediatric Nephrology Consortium (2015) AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol 10:2110–2118. https://doi.org/10.2215/CJN.06620615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyrier A, Niaudet P (2018) Acute kidney injury complicating Nephrotic syndrome of minimal change disease. Kidney Int 94:861–869

    PubMed  Google Scholar 

  7. Prasad BS, Kumar M, Dabas A, Mishra K (2019) Profile of acute kidney injury in hospitalized children with idiopathic nephrotic syndrome. Indian Pediatr 56:119–122

    CAS  PubMed  Google Scholar 

  8. Ellis D (2015) Pathophysiology, evaluation, and management of edema in childhood nephrotic syndrome. Front Pediatr 3:111. https://doi.org/10.3389/fped.2015.00111

    Article  PubMed  Google Scholar 

  9. Humphreys MH (1994) Mechanisms and management of nephrotic edema. Kidney Int 45:266–281. https://doi.org/10.1038/ki.1994.33

    Article  CAS  PubMed  Google Scholar 

  10. Noddeland H, Riisnes SM, Fadnes HO (1982) Interstitial fluid colloid osmotic and hydrostatic pressures in subcutaneous tissue of patients with nephrotic syndrome. Scand J Clin Lab Invest 42:139–146

    CAS  PubMed  Google Scholar 

  11. Bockenhauer D (2013) Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol 28:1153–1156. https://doi.org/10.1007/s00467-013-2435-6

    Article  PubMed  Google Scholar 

  12. Siddall EC, Radhakrishnan J (2012) The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 82:635–642. https://doi.org/10.1038/ki.2012.180

    Article  CAS  PubMed  Google Scholar 

  13. Gupta S, Pepper RJ, Ashman N, Walsh SB (2019) Nephrotic syndrome: oedema formation and its treatment with diuretics. Front Physiol 9:1868

    PubMed  PubMed Central  Google Scholar 

  14. Dorhout EJ, Roos JC, Boer P, Yoe OH, Simatupang TA (1979) Observations on edema formation in the nephrotic syndrome in adults with minimal lesions. Am J Med 67:378–384. https://doi.org/10.1016/0002-9343(79)90782-4

    Article  CAS  PubMed  Google Scholar 

  15. Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S (1979) Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med 91:688–696. https://doi.org/10.7326/0003-4819-91-5-688

    Article  CAS  PubMed  Google Scholar 

  16. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM (1983) Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest 71:91–103

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vogt B, Favre H (1991) Na+,K(+)-ATPase activity and hormones in single nephron segments from nephrotic rats. Clin Sci (Lond) 80:599–604

    CAS  Google Scholar 

  18. Buyukavci MA, Civilibal M, Elevli M, Selcuk Duru HN (2015) Hypo- and hypervolemic edema in children with steroid sensitive nephrotic syndrome. Turk J Med Sci 45:178–183

    CAS  PubMed  Google Scholar 

  19. Iyengar AA, Kamath N, Vasudevan A, Phadke KD (2011) Urinary indices during relapse of childhood nephrotic syndrome. Indian J Nephrol 21:172–176. https://doi.org/10.4103/0971-4065.83030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu H, Kapur G, Mattoo TK, Lyman WD (2012) Hypoxia decreases podocyte expression of slit diaphragm proteins. Int J Nephrol Renov Dis 5:101–107. https://doi.org/10.2147/IJNRD.S27332

    Article  CAS  Google Scholar 

  21. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O (2009) Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20:299–310. https://doi.org/10.1681/ASN.2008040364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deschênes G, Wittner M, Stefano A, Jounier S, Doucet A (2001) Collecting duct is a site of sodium retention in PAN nephrosis: a rationale for amiloride therapy. J Am Soc Nephrol 12:598–601

    PubMed  Google Scholar 

  23. Deschenes G, Doucet A (2000) Collecting duct (Na+/K+)-ATPase activity is correlated with urinary sodium excretion in rat nephrotic syndromes. J Am Soc Nephrol 11:604–615

    CAS  PubMed  Google Scholar 

  24. Kottke MA, Walters TJ (2016) Where's the leak in vascular barriers? A review. Shock 46(3 Suppl 1):20–36. https://doi.org/10.1097/SHK.0000000000000666

    Article  PubMed  Google Scholar 

  25. Myburgh JA, Mythen MG (2013) Resuscitation fluids. N Engl J Med 369:1243–1251

    CAS  PubMed  Google Scholar 

  26. Chignalia AZ, Yetimakman F, Christiaans SC, Unal S, Bayrakci B, Wagener BM, Russell RT, Kerby JD, Pittet JF, Dull RO (2016) The glycocalyx and trauma: a review. Shock 45:338–348

    PubMed  PubMed Central  Google Scholar 

  27. Fiorotto M, Coward WA (1979) Pathogenesis of oedema in protein-energy malnutrition: the significance of plasma colloid osmotic pressure. Br J Nutr 42:21–31

    CAS  PubMed  Google Scholar 

  28. Geers AB, Koomans HA, Roos JC, Boer P, Dorhout Mees EJ (1984) Functional relationships in the nephrotic syndrome. Kidney Int 26:324–330. https://doi.org/10.1038/ki.1984.176

    Article  CAS  PubMed  Google Scholar 

  29. Siddall EC, Radhakrishnan J (2012) The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 82:635–642. https://doi.org/10.1038/ki.2012.180

    Article  CAS  PubMed  Google Scholar 

  30. Vande Walle JG, Donckerwolcke RA, Koomans HA (1999) Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. J Am Soc Nephrol 10:323–331

    CAS  PubMed  Google Scholar 

  31. Johnson MD, Malvin RL (1977) Stimulation of renal sodium reabsorption by angiotensin II. Am J Phys 232:F298–F306

    CAS  Google Scholar 

  32. Light DB, Schwiebert EM, Karlson KH, Stanton BA (1989) Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–385

    CAS  PubMed  Google Scholar 

  33. Perico N, Delaini F, Lupini C, Benigni A, Galbusera M, Boccardo P, Remuzzi G (1989) Blunted excretory response to atrial natriuretic peptide in experimental nephrosis. Kidney Int 36:57–64. https://doi.org/10.1038/ki.1989.161

    Article  CAS  PubMed  Google Scholar 

  34. Valentin JP, Qiu C, Muldowney WP, Ying WZ, Gardner DG, Humphreys MH (1992) Cellular basis for blunted volume expansion natriuresis in experimental nephrotic syndrome. J Clin Invest 90:1302–1312. https://doi.org/10.1172/JCI115995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mansy H, Goodship TH, Tapson JS, Hartley GH, Keavey P, Wilkinson R (1989) Effect of a high protein diet in patients with the nephrotic syndrome. Clin Sci (Lond) 77:445–451

    CAS  Google Scholar 

  36. Cadnapaphornchai MA, Tkachenko O, Shchekochikhin D, Schrier RW (2014) The nephrotic syndrome: pathogenesis and treatment of edema formation and secondary complications. Pediatr Nephrol 29:1159–1167

    PubMed  Google Scholar 

  37. Kapur G, Valentini RP, Imam AA, Mattoo TK (2009) Treatment of severe edema in children with nephrotic syndrome with diuretics alone--a prospective study. Clin J Am Soc Nephrol 4:907–913

    PubMed  PubMed Central  Google Scholar 

  38. Matsumoto H, Miyaoka Y, Okada T, Nagaoka Y, Wada T, Gondo A, Esaki S, Hayashi A, Nakao T (2011) Ratio of urinary potassium to urinary sodium and the potassium and edema status in nephrotic syndrome. Intern Med 50:551–555

    CAS  PubMed  Google Scholar 

  39. Donckerwolcke RAMG, France A, Raes A, Vande Walle J (2003) Distal nephron sodium-potassium exchange in children with nephrotic syndrome. Clin Nephrol 59:259–266

    CAS  PubMed  Google Scholar 

  40. Brater DC (1991) Clinical pharmacology of loop diuretics. Drugs 41:14–22. https://doi.org/10.2165/00003495-199100413-00004

    Article  PubMed  Google Scholar 

  41. Hammarlund MM, Paalzow LK, Odlind B (1984) Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur J Clin Pharmacol 26:197–207

    CAS  PubMed  Google Scholar 

  42. Waller ES, Hamilton SF, Massarella JW, Sharanevych MA, Smith RV, Yakatan GJ, Doluisio JT (1981) Disposition and absolute bioavailability of furosemide in healthy males. J Pharm Sci 71:1105–1108

    Google Scholar 

  43. Hoorn EJ, Ellison DH (2017) Diuretic resistance. Am J Kidney Dis 69:136–142

    CAS  PubMed  Google Scholar 

  44. Sica DA (2003) Drug absorption in the management of congestive heart failure: loop diuretics. Congest Heart Fail 9:287–292

    CAS  PubMed  Google Scholar 

  45. Duffy M, Jain S, Harrell N, Kothari N, Reddi AS (2015) Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies. Cells 4:622–630

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Agarwal R, Gorski JC, Sundblad K, Brater DC (2000) Urinary protein binding does not affect response to furosemide in patients with nephrotic syndrome. J Am Soc Nephrol 11:1100–1105

    CAS  PubMed  Google Scholar 

  47. Brater DC, Day B, Burdette A, Anderson S (1984) Bumetanide and furosemide in heart failure. Kidney Int 26:183–189

    CAS  PubMed  Google Scholar 

  48. Lau K, DeFronzo R, Morrison G, Rascoff J, Goldberg M, Agus ZS (1976) Effectiveness of bumetanide in nephrotic syndrome: a double-blind crossover study with furosemide. J Clin Pharmacol 16:489–497

    CAS  PubMed  Google Scholar 

  49. Hropot M, Fowler N, Karlmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int 28:477–489

    CAS  PubMed  Google Scholar 

  50. Suki WN, Dawoud F, Eknoyan G, Martinez-Maldonado M (1972) Effects of metolazone on renal function in normal man. J Pharmacol Exp Ther 180:6–12

    CAS  PubMed  Google Scholar 

  51. Preisig PA, Toto RD, Alpern RJ (1987) Carbonic anhydrase inhibitors. Renal Physiol 10:136–159

    CAS  PubMed  Google Scholar 

  52. Vidt DG (1981) Mechanism of action, pharmacokinetics, adverse effects, and therapeutic uses of amiloride hydrochloride, a new potassium-sparing diuretic. Pharmacotherapy 1:179–187

    CAS  PubMed  Google Scholar 

  53. Hinrichs GR, Mortensen LA, Jensen BL, Bistrup C (2018) Amiloride resolves resistant edema and hypertension in a patient with nephrotic syndrome; a case report. Phys Rep 6:e13743

    Google Scholar 

  54. Peters H, Noble NA (1997) Angiotensin II and L-arginine in tissue fibrosis: more than blood pressure. Kidney Int 51:1481–1486. https://doi.org/10.1038/ki.1997.203

    Article  CAS  PubMed  Google Scholar 

  55. Shin GT, Kim SJ, Ma KA, Kim HS, Kim D (2000) ACE inhibitors attenuate expression of renal transforming growth factor-beta1 in humans. Am J Kidney Dis 36:894–902

    CAS  PubMed  Google Scholar 

  56. Berlyne GM, Brown C, Adler A, Feinroth MV, Feinroth M, Hirsch S, Friedman EA (1981) Water immersion in nephrotic syndrome. Arch Intern Med 141:1275–1278

    CAS  PubMed  Google Scholar 

  57. Gheorghiade M, Orlandi C, Burnett JC, Demets D, Grinfeld L, Maggioni A, Swedberg K, Udelson JE, Zannad F, Zimmer C, Konstam MA (2005) Rationale and design of the multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy of vasopressin antagonism in heart failure: outcome study with tolvaptan (EVEREST). J Card Fail 11:260–269

    CAS  PubMed  Google Scholar 

  58. Okita K, Sakaida I, Okada M, Kaneko A, Chayama K, Kato M, Sata M, Yoshihara H, Ono N, Murawaki Y (2010) A multicenter, open-label, dose-ranging study to exploratively evaluate the efficacy, safety, and dose-response of tolvaptan in patients with decompensated liver cirrhosis. J Gastroenterol 45:979–987

    CAS  PubMed  Google Scholar 

  59. Chen S, Zhao JJ, Tong NW, Guo XH, Qiu MC, Yang GY, Liu ZM, Ma JH, Zhang ZW, Gu F (2014) Randomized, double blinded, placebo-controlled trial to evaluate the efficacy and safety of tolvaptan in Chinese patients with hyponatremia caused by SIADH. J Clin Pharmacol 54:1362–1367

    CAS  PubMed  Google Scholar 

  60. Petereit C, Zaba O, Teber I, Luders H, Grohe C (2013) A rapid and efficient way to manage hyponatremia in patients with SIADH and small cell lung cancer: treatment with tolvaptan. BMC Pulm Med 13:55

    PubMed  PubMed Central  Google Scholar 

  61. Park ES, Huh YS, Kim GH (2015) Is tolvaptan indicated for refractory oedema in nephrotic syndrome? Nephrology (Carlton) 20:103–106. https://doi.org/10.1111/nep.12348

    Article  CAS  Google Scholar 

  62. Shimizu M, Ishikawa S, Yachi Y, Muraoka M, Tasaki Y, Iwasaki H, Kuroda M, Ohta K, Yachie A (2014) Tolvaptan therapy for massive edema in a patient with nephrotic syndrome. Pediatr Nephrol 29:915–917

    PubMed  Google Scholar 

  63. Takada T, Masaki T, Hoshiyama A, Toki T, Kamata Y, Shichiri M (2018) Tolvaptan alleviates excessive fluid retention of nephrotic diabetic renal failure unresponsive to furosemide. Nephrology (Carlton) 23:883–886

    CAS  Google Scholar 

  64. Tanaka A, Nakamura T, Sato E, Ueda Y, Node K (2017) Different effects of tolvaptan in patients with idiopathic membranous nephropathy with nephrotic syndrome. Intern Med 56:191–196

    PubMed  PubMed Central  Google Scholar 

  65. Cil O, Esteva-Font C, Tas ST, Su T, Lee S, Anderson MO, Ertunc M, Verkman AS (2015) Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats. Kidney Int 88:311–320

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Knepper MA, Miranda CA (2013) Urea channel inhibitors: a new functional class of aquaretics. Kidney Int 83:991–993

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, Burnett JC (2018) Particulate guanylyl cyclase a/cGMP signaling pathway in the kidney: physiologic and therapeutic indications. Int J Mol Sci 19:1006. https://doi.org/10.3390/ijms19041006

    Article  CAS  PubMed Central  Google Scholar 

  68. Wilson SS, Ayaz SI, Levy PD (2015) Relaxin: a novel agent for the treatment of acute heart failure. Pharmacotherapy 35:315–327. https://doi.org/10.1002/phar.1548

    Article  CAS  PubMed  Google Scholar 

  69. Gimpelewicz C, Metra M, Cleland JGF, Szecsody P, Chang Wun CC, Boer-Martins L, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Pang P, Ponikowski P, Severin T, Voors AA, Teerlink JR (2017) Effects of serelaxin on the outcome of patients with or without substantial peripheral edema: a subgroup analysis from the RELAX-AHF trial. Am Heart J 190:113–122

    CAS  PubMed  Google Scholar 

  70. Theilig F, Wu Q (2015) ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Ren Physiol 308:F1047–F1055

    CAS  Google Scholar 

  71. Ueda K, Hirahashi J, Seki G, Tanaka M, Kushida N, Takeshima Y, Nishikawa Y, Fujita T, Nangaku M (2014) Successful treatment of acute kidney injury in patients with idiopathic nephrotic syndrome using human atrial natriuretic peptide. Intern Med 53:865–869

    PubMed  Google Scholar 

  72. Boeing T, da Silva LM, Mariott M, Andrade SF, de Souza P (2017) Diuretic and natriuretic effect of luteolin in normotensive and hypertensive rats: role of muscarinic acetylcholine receptors. Pharmacol Rep 69:1121–1124. https://doi.org/10.1016/j.pharep.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  73. Mariano LNB, Boeing T, da Silva R, Cechinel-Filho V, Niero R, da Silva LM, de Souza P, Andrade SF (2018) Preclinical evaluation of the diuretic and saluretic effects of (-)-epicatechin and the result of its combination with standard diuretics. Biomed Pharmacother 107:520–525

    CAS  PubMed  Google Scholar 

Download references

Availability of data and material

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Kallash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Answers:

1. c; 2. a; 3. b; 4. a

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Multiple-choice questions (answers follow reference list)

Multiple-choice questions (answers follow reference list)

  1. 1-

    A 12-year-old male with SRNS presented to the ER with worsening edema. Exam showed facial and leg edema with ascites and he looked uncomfortable. Vital signs: heart rate 75/min, respiratory rate 24/min, BP 138/76 with no orthostatic hypotension. Work up showed: serum albumin 2.2 g/dl, serum Cr 0.5 mg/dl, urine protein > 300 mg/dl and negative for blood.

    Of the following, the most likely pathophysiologic mechanism of edema in this child:

    1. a)

      Lack of hematuria makes overfill more likely than underfill as the dominant mechanism

    2. b)

      Underfill is the most likely mechanism with his serum albumin > 2 g/dl

    3. c)

      The absence of hypotension makes overfill the more likely dominant mechanism

    4. d)

      We cannot determine his most likely mechanism since we do not have the urine Na measured.

  2. 2-

    In the previous case, the best initial plan to treat his edema is:

    1. a)

      Furosemide

    2. b)

      Albumin 25% followed by Furosemide

    3. c)

      Amiloride

    4. d)

      Hydrochlorothiazide.

  3. 3-

    A 9-year-old male with SRNS presented for a routine clinic visit. You noticed that he gained 12 lbs. since his last clinic visit six weeks ago and he complains of discomfort with his feet. He appeared comfortable otherwise and denied any pain. His physical examination showed pitting edema in his feet and legs and mild abdominal distention. His BP was 90/55, heart rate 90 /min. When approaching edema management in this child, of the following options, the best one to pursue is to:

    1. a)

      Avoid the outpatient use of loop diuretics as these agents are associated with increased risk of acute kidney injury

    2. b)

      Initiate diuretics since reducing edema has been shown to improve quality of life in subjects with NS

    3. c)

      Initiate a small dose of Lisinopril and follow up his weight in 1 week

    4. d)

      There is no indication to initiate diuretics since he has minimal symptoms.

  4. 4-

    A 7-year-old female with NS was admitted to the hospital for management of severe edema. Physical examination showed significant edema overall, abdominal distention and mild abdominal pain with palpation. Her BP was 132/85 and heart rate 90/min. Serum albumin was 2.3 g/dl. After 36 h of diuresis with furosemide, her fluid balance was negative for 560 ml and she continued to complain of abdominal discomfort. Of the following factors, this poor response to diuretics may best be explained by:

    1. a)

      Decreased kidney function

    2. b)

      Decreased distribution of furosemide in extracellular space with edema

    3. c)

      Increased excretion of furosemide into the urinary filtrate in NS

    4. d)

      Lack of binding of furosemide to albumin in the intratubular space

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallash, M., Mahan, J.D. Mechanisms and management of edema in pediatric nephrotic syndrome. Pediatr Nephrol 36, 1719–1730 (2021). https://doi.org/10.1007/s00467-020-04779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04779-x

Keywords

Navigation