Skip to main content
Log in

Management of edema in pediatric nephrotic syndrome – Underfill or overfill?

  • Renal (D Noone, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of review

To explore the mechanisms underlying edema formation in nephrotic syndrome. We highlight new methods of volume assessment and a stepwise approach to the management of edema.

Recent findings

New tools are available for intravascular volume assessment. New medications and modalities have been developed for the management of edema.

Summary

Edema is a major feature of nephrotic syndrome in children. It can be secondary to multiple mechanisms. Regardless of the causing mechanism, targeted management of edema should be guided by an adequate assessment of the intravascular volume. Urine studies e.g. urine sodium and potassium, as well as echocardiogram, can prove to be valuable tools. Besides diuretics, new agents and modalities are being developed for edema management including Aquaretics and isolated ultrafiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Selewski DT, Troost JP, Massengill SF, et al. The impact of disease duration on quality of life in children with nephrotic syndrome: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2015;30(9):1467–76. https://doi.org/10.1007/s00467-015-3074-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gipson DS, Selewski DT, Massengill SF, Wickman L, Messer KL, Herreshoff E, Bowers C, Ferris ME, Mahan JD, Greenbaum LA, MacHardy J, Kapur G, Chand DH, Goebel J, Barletta GM, Geary D, Kershaw DB, Pan CG, Gbadegesin R, et al. Gaining the PROMIS perspective from children with nephrotic syndrome: a Midwest pediatric nephrology consortium study. Health Qual Life Outcomes. 2013 Mar;4(11):30. https://doi.org/10.1186/1477-7525-11-30.

    Article  Google Scholar 

  3. Ellis D. Pathophysiology, evaluation, and management of edema in childhood nephrotic syndrome. Front Pediatr. 2015;3:111. https://doi.org/10.3389/fped.2015.00111.

    Article  PubMed  Google Scholar 

  4. Bockenhauer D. Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol. 2013;28:1153–6. https://doi.org/10.1007/s00467-013-2435-6.

    Article  PubMed  Google Scholar 

  5. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26. https://doi.org/10.1113/jphysiol.1896.sp000596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deen WM, Bohrer MP, Brenner BM. Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int. 1979;16(3):353–65. https://doi.org/10.1038/ki.1979.138.

    Article  CAS  PubMed  Google Scholar 

  7. Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res. 1980;20:96–9. https://doi.org/10.1016/0026-2862(80)90024-2.

    Article  CAS  PubMed  Google Scholar 

  8. Michel CC. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol. 1980;309:341–55. https://doi.org/10.1113/jphysiol.1980.sp013512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69:777–84. https://doi.org/10.1111/anae.12661.

    Article  CAS  PubMed  Google Scholar 

  10. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    Article  CAS  PubMed  Google Scholar 

  11. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. British Journal of Anaesthesia. 2012;108(3):384–94. ISSN 0007-0912. https://doi.org/10.1093/bja/aer515.

    Article  CAS  PubMed  Google Scholar 

  12. Erstad BL. The revised starling equation: the debate of albumin versus crystalloids continues. Ann Pharmacother. 2020;54(9):921–7. https://doi.org/10.1177/1060028020907084.

    Article  PubMed  Google Scholar 

  13. Rippe B, Haraldsson B. Capillary permeability in rat hindquarters as determined by estimations of capillary reflection coefficients. Acta Physiol Scand. 1986 Jul;127(3):289–303. https://doi.org/10.1111/j.1748-1716.1986.tb07908.x.

    Article  CAS  PubMed  Google Scholar 

  14. Paguio VME, Kappel F, Kotanko P. A model of vascular refilling with inflammation. Mathematical Biosciences. 2018;303:101–14, ISSN 0025-5564. https://doi.org/10.1016/j.mbs.2018.06.007.

    Article  PubMed  Google Scholar 

  15. Kongstad L, Möller AD, Grände PO. Reflection coefficient for albumin and capillary fluid permeability in cat calf muscle after traumatic injury. Acta Physiol Scand. 1999;165(4):369–77. https://doi.org/10.1046/j.1365-201x.1999.00521.x.

    Article  CAS  PubMed  Google Scholar 

  16. Carter RD, Joyner WL, Renkin EM. Effects of histamine and some other substances on molecular selectivity of the capillary wall to plasma proteins and dextran. Microvasc Res. 1974;7:31–48.

    Article  CAS  PubMed  Google Scholar 

  17. Perrin RM, Harper SJ, Corrall R, et al. Hyperglycemia stimulates a sustained increase in hydraulic conductivity in vivo without any change in reflection coefficient. Microcirculation. 2007;14:683–96.

    Article  CAS  PubMed  Google Scholar 

  18. Baldwin AL, Wilson LM, Simon BR. Effect of pressure on aortic hydraulic conductance. Arterioscler Thromb. 1992;12:163–71.

    Article  CAS  PubMed  Google Scholar 

  19. Seal JB, Gewertz BL. Vascular dysfunction in ischemia reperfusion injury. Ann Vasc Surg. 2005;19:572–84.

    Article  PubMed  Google Scholar 

  20. Henry CB, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol. 2000;279:2815–23.

    Article  Google Scholar 

  21. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, Becker BF. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9.

    Article  CAS  PubMed  Google Scholar 

  22. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55:1127–32.

    Article  CAS  PubMed  Google Scholar 

  23. Fauchald P, Noddeland H, J. Norseth Interstitial fluid volume, plasma-volume and colloid osmotic-pressure in patients with nephrotic syndrome. Scand J Clin Lab Invest. 1984;44:661–7.

    Article  CAS  PubMed  Google Scholar 

  24. Koomans HA, Geers AB, Dorhout Mees EJ, et al. Lowered tissue-fluid oncotic pressure protects the blood volume in the nephrotic syndrome. Nephron. 1986;42:317–22.

    Article  CAS  PubMed  Google Scholar 

  25. Aukland K, G. Nicolaysen Interstitial fluid volume: local regulatory mechanisms. Physiol Rev. 1981;61:556–643.

    Article  CAS  PubMed  Google Scholar 

  26. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993 Jan;73(1):1–78. https://doi.org/10.1152/physrev.1993.73.1.1.

    Article  CAS  PubMed  Google Scholar 

  27. Ostgaard G, Reed RK. Increased lymphatic hyaluronan output and preserved hyaluronan content of the rat small intestine in prolonged hypoproteinaemia. Acta Physiol Scand. 1994 Sep;152(1):51–6. https://doi.org/10.1111/j.1748-1716.1994.tb09783.x.

    Article  CAS  PubMed  Google Scholar 

  28. Geers AB, Koomans HA, Roos JC, Evert J, Mees D. Preservation of blood volume during edema removal in nephrotic subjects. Kidney Int. 1985;28(4):652–7, ISSN 0085-2538. https://doi.org/10.1038/ki.1985.179.

    Article  CAS  PubMed  Google Scholar 

  29. Olmer M, Berland Y, Purgus R, Schultz G. Determination of blood volume in nephrotic patients. Am J Nephrol. 1989;9(3):211–4. https://doi.org/10.1159/000167967.

    Article  CAS  PubMed  Google Scholar 

  30. Vande Walle JG, Donckerwolcke RAMG, van Isselt JW, Joles JA, Koomans HA, Derkx FHM. Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. The Lancet. 1995;346(8968):148–52, ISSN 0140-6736. https://doi.org/10.1016/S0140-6736(95)91210-X.

    Article  CAS  Google Scholar 

  31. Geers AB, Koomans HA, Boer P, Dorhout Mees EJ. Plasma and blood volumes in patients with the nephrotic syndrome. Nephron. 1984;38(3):170–3. https://doi.org/10.1159/000183302.

    Article  CAS  PubMed  Google Scholar 

  32. Manning RD Jr, A.C. Guyton Effects of hypoproteinemia on fluid volumes and arterial pressure. Am J Physiol. 1983;245:H284–93.

    CAS  PubMed  Google Scholar 

  33. Yoo HD, Choi KS, Jung MH, et al. A study of the renin-angiotensin system and the blood volume in the nephrotic syndrome. Korean J Intern Med. 1986;1(1):72–7. https://doi.org/10.3904/kjim.1986.1.1.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersen RF, Nørgaard H, Hagstrøm S, Bjerre J, Jespersen B, Rittig S. High plasma aldosterone is associated with a risk of reversible decreased eGFR in childhood idiopathic nephrotic syndrome. Nephrol Dial Transplant. 2013 Apr;28(4):944–52. https://doi.org/10.1093/ndt/gfs527.

    Article  CAS  PubMed  Google Scholar 

  35. Vande Walle JG, Donckerwolcke RA, Koomans HA. Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. .

  36. J. Plum, Y. Mirzaian, B. Grabensee, Atrial natriuretic peptide, sodium retention, and proteinuria in nephrotic syndrome, Nephrol Dial Transplant, Volume 11, Issue 6, June 1996, Pages 1034–1042, https://doi.org/10.1093/ndt/11.6.1034.

  37. Valentin JP, Qiu C, Muldowney WP, Ying WZ, Gardner DG, Humphreys MH. Cellular basis for blunted volume expansion natriuresis in experimental nephrotic syndrome. J Clin Invest. 1992;90:1302–12. https://doi.org/10.1172/JCI115995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. El-Halaby H, Bakr A, Eid R, Abdalla HA, Hamdy N, Shamekh N, Adel A, El-Husseiny A. Edema in childhood nephrotic syndrome: possible genes-hormones interplay. J Genet Eng Biotechnol. 2022;20(1):30. https://doi.org/10.1186/s43141-022-00310-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Polzin D, Kaminski HJ, Kastner C, Wang W, Krämer S, Gambaryan S, Russwurm M, Peters H, Wu Q, Vandewalle A, Bachmann S, Theilig F. Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int. 2010;78:650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rascher W, Tulassay T. Hormonal regulation of water metabolism in children with nephrotic syndrome. Kidney Int Suppl. 1987 Aug;21:S83–9.

    CAS  PubMed  Google Scholar 

  41. Pedersen EB, Danielsen H, Sørensen SS, Jespersen B. Renal water excretion before and after remission of nephrotic syndrome: relationship between free water clearance and kidney function, arginine vasopressin, angiotensin II and aldosterone in plasma before and after oral water loading. Clin Sci (Lond). 1986 Jul;71(1):97–104. https://doi.org/10.1042/cs0710097.

    Article  CAS  PubMed  Google Scholar 

  42. Usberti M, Federico S, Meccariello S, Cianciaruso B, Balletta M, Pecoraro C, Sacca L, Ungaro B, Pisanti N, Andreucci VE. Role of plasma vasopressin in the impairment of water excretion in nephrotic syndrome. Kidney Int. 1984 Feb;25(2):422–9. https://doi.org/10.1038/ki.1984.34.

    Article  CAS  PubMed  Google Scholar 

  43. Brovko M, Kozlovskaya L, Pulin A, et al. Low aquaporin-2 excretion in the nephrotic syndrome: an escape from the vasopressin regulating effect. Int J Nephrol Renovasc Dis. 2018;11:271–7. https://doi.org/10.2147/IJNRD.S177469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernández-Llama P, Andrews P, Nielsen S, Ecelbarger CA, Knepper MA. Impaired aquaporin and urea transporter expression in rats with adriamycin-induced nephrotic syndrome. Kidney Int. 1998 May;53(5):1244–53. https://doi.org/10.1046/j.1523-1755.1998.00878.x.

    Article  PubMed  Google Scholar 

  45. Ichikawa I, Rennke HG, Hoyer JR, et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983;71:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim SW, Wang W, Nielsen J, Praetorius J, Kwon TH, Knepper MA, Frøkiaer J, Nielsen S. Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol. 2004 May;286(5):F922–35. https://doi.org/10.1152/ajprenal.00277.2003.

    Article  CAS  PubMed  Google Scholar 

  47. Deschenes G, Gonin S, Zolty E, et al. Increased synthesis and AVP unresponsiveness of Na, K-ATPase in collecting duct from nephrotic rats. J Am Soc Nephrol. 2001;12:2241–52.

    Article  CAS  PubMed  Google Scholar 

  48. Lourdel S, Loffing J, Favre G, Paulais M, Nissant A, Fakitsas P, Créminon C, Féraille E, Verrey F, Teulon J, Doucet A, Deschênes G. Hyperaldosteronemia and activation of the epithelial sodium channel are not required for sodium retention in puromycin-induced nephrosis. J Am Soc Nephrol. 2005;16(12):3642–50. https://doi.org/10.1681/ASN.2005040363.

    Article  CAS  PubMed  Google Scholar 

  49. Hughey RP, Mueller GM, Bruns JB, et al. Maturation of the epithelial Naþ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem. 2003;278:37073–82.

    Article  CAS  PubMed  Google Scholar 

  50. Svenningsen P, Bistrup C, Friis UG, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20:299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Passero CJ, Mueller GM, Rondon-Berrios H, et al. Plasmin activates epithelial Naþ channels by cleaving the gamma subunit. J Biol Chem. 2008;283:36586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ray EC, Miller RG, Demko JE, et al. Urinary plasmin(ogen) as a prognostic factor for hypertension. Kidney Int Rep. 2018;3(6):1434–42. https://doi.org/10.1016/j.ekir.2018.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen JL, Wang L, Yao XM, Zang YJ, Wang Y, Li ZJ, Pearce D, Wang H. Association of urinary plasminogen-plasmin with edema and epithelial sodium channel activation in patients with nephrotic syndrome. Am J Nephrol. 2019;50(2):92–104. https://doi.org/10.1159/000501059.

    Article  CAS  PubMed  Google Scholar 

  54. Brown EA, Markandu ND, Sagnella GA, Jones BE, MacGregor GA. Lack of effect of captopril on the sodium retention of the nephrotic syndrome. Nephron. 1984;37(1):43–8. https://doi.org/10.1159/000183206.

    Article  CAS  PubMed  Google Scholar 

  55. Boyd JH, Sirounis D, Maizel J, Slama M. Echocardiography as a guide for fluid management. Crit Care. 2016;20(1):274. https://doi.org/10.1186/s13054-016-1407-1.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dönmez O, Mir S, Özyürek R, et al. Inferior vena cava indices determine volume load in minimal lesion nephrotic syndrome. Pediatr Nephrol. 2001;16:251–5. https://doi.org/10.1007/s004670000536.

    Article  PubMed  Google Scholar 

  57. Büyükavci MA, Çivilibal M, Elevli M, Selçuk Duru HN. Hypo- and hypervolemic edema in children with steroid sensitive nephrotic syndrome. Turk J Med Sci. 2015;45(1):178–83.

    Article  PubMed  Google Scholar 

  58. Earthman C, Traughber D, Dobratz J, Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutr Clin Pract. 2007 Aug;22(4):389–405. https://doi.org/10.1177/0115426507022004389.

    Article  PubMed  Google Scholar 

  59. Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008 Dec;30(10):1257–69. https://doi.org/10.1016/j.medengphy.2008.06.009.

    Article  PubMed  Google Scholar 

  60. Brantlov S, Jødal L, Frydensbjerg Andersen R, Lange A, Rittig S, Ward LC. Bioimpedance Resistance Indices and Cell Membrane Capacitance Used to Assess Disease Status and Cell Membrane Integrity in Children with Nephrotic Syndrome. ScientificWorldJournal. 2019;2019:4274856. https://doi.org/10.1155/2019/4274856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cadnapaphornchai MA, Tkachenko O, Shchekochikhin D, et al. The nephrotic syndrome: pathogenesis and treatment of edema formation and secondary complications. Pediatr Nephrol. 2014;29:1159–67. https://doi.org/10.1007/s00467-013-2567-8.

    Article  PubMed  Google Scholar 

  62. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes. Appendix J. Dietary reference intakes summary tables. In: Oria M, Harrison M, Stallings VA, editors. Dietary reference intakes for sodium and potassium. Washington, DC: National Academies Press (US); 2019.

    Google Scholar 

  63. •• Hampson KJ, Gay ML, Band ME. Pediatric nephrotic syndrome: pharmacologic and nutrition management. Nutr Clin Pract. 2021;36(2):331–43. https://doi.org/10.1002/ncp.10622An updated review article that focuses on the nutritional requirements and pharmacological management in nephrotic syndrome patients.

    Article  PubMed  Google Scholar 

  64. Patrick Niaudet and Olivia Boyer. Avner ED et al. (eds.), Idiopathic childhood nephrotic syndrome. Pediatric nephrology, Springer-Verlag Berlin Heidelberg 2016. https://doi.org/10.1007/978-3-662-43596-0_24.

    Chapter  Google Scholar 

  65. •• Boyer O, Schaefer F, Haffner D, Bockenhauer D, Hölttä T, Bérody S, Webb H, Heselden M, Lipska-Zie Tkiewicz BS, Ozaltin F, Levtchenko E, Vivarelli M. Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nat Rev Nephrol. 2021;17(4):277–89. https://doi.org/10.1038/s41581-020-00384-1 Erratum in: Nat Rev Nephrol. 2021 Jun;17(6):434. These are the consensus recommendations of the ERKNet-ESPN Working Group that were Published in the Nat Rev Neph in 2021. These provide detailed up-to-date recommendations about the management of patients with congenital NS.

    Article  PubMed  PubMed Central  Google Scholar 

  66. •• Sinha A, Bagga A, Banerjee S, Mishra K, Mehta A, Agarwal I, Uthup S, Saha A, Mishra OP. Expert Group of Indian Society of Pediatric Nephrology. Steroid sensitive nephrotic syndrome: revised guidelines. Indian Pediatr. 2021;58(5):461–81. https://doi.org/10.1007/s13312-021-2217-3These are the guidelines of the Indian society of pediatric nephrology. They provide a stepwise approach to the management of childhood NS including the targeted management of edema.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kapur G, Valentini RP, Imam AA, Mattoo TK. Treatment of severe edema in children with nephrotic syndrome with diuretics alone--a prospective study. Clin J Am Soc Nephrol. 2009;4(5):907–913. https://doi.org/10.2215/CJN.04390808.

  68. Duffy M, Jain S, Harrell N, Kothari N, Reddi AS. Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies. Cells. 2015;4(4):622–30. https://doi.org/10.3390/cells4040622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Agarwal R, Gorski JC, Sundblad K, Brater DC. Urinary protein binding does not affect response to furosemide in patients with nephrotic syndrome. J Am Soc Nephrol. 2000 Jun;11(6):1100–5. https://doi.org/10.1681/ASN.V1161100.

    Article  CAS  PubMed  Google Scholar 

  70. Deschênes G, Wittner M, Stefano AD, Jounier S, Doucet A. Collecting duct is a site of sodium retention in PAN nephrosis: a rationale for amiloride therapy. J Am Soc Nephrol. 2001b;12:598–601.

    Article  PubMed  Google Scholar 

  71. Liern M, Colazo A, Vallejo G, Zotta E. Antiproteinuric action of amiloride in paediatric patient with corticoresistant nephrotic syndrome. Nefrologia (Engl Ed). 2021;41(3):304-310. English, Spanish. https://doi.org/10.1016/j.nefro.2020.11.014.

  72. Morales E, Caro J, Gutierrez E, Sevillano A, Auñón P, Fernandez C, Praga M. Diverse diuretics regimens differentially enhance the antialbuminuric effect of renin-angiotensin blockers in patients with chronic kidney disease. Kidney Int. 2015 Dec;88(6):1434–41. https://doi.org/10.1038/ki.2015.249.

    Article  CAS  PubMed  Google Scholar 

  73. Hedin E, Bijelić V, Barrowman N, Geier P. Furosemide and albumin for the treatment of nephrotic edema: a systematic review. Pediatr Nephrol. 2022. https://doi.org/10.1007/s00467-021-05358-4.

  74. Ghafari A, Mehdizadeh A, Alavi-Darazam I, Rahimi E, Kargar C, Sepehrvand N. Co-administration of albumin-furosemide in patients with the nephrotic syndrome. Saudi J Kidney Dis Transpl. 2011 May;22(3):471–5.

    PubMed  Google Scholar 

  75. •• Kallash M, Mahan JD. Mechanisms and management of edema in pediatric nephrotic syndrome. Pediatr Nephrol. 2021;36(7):1719–30. https://doi.org/10.1007/s00467-020-04779-xA review article that explores the mechanisms of edema formation in children with NS. It gives recommendations about the approach and specific management of edema. It compiles a list of all known management strategies and therapies.

    Article  PubMed  Google Scholar 

  76. Menon S, Broderick J, Munshi R, Dill L, DePaoli B, Fathallah-Shaykh S, Claes D, Goldstein SL, Askenazi DJ. Kidney support in children using an ultrafiltration device: a multicenter, retrospective study. Clin J Am Soc Nephrol. 2019;14(10):1432–40. https://doi.org/10.2215/CJN.03240319.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matsumoto H, Miyaoka Y, Okada T, Nagaoka Y, Wada T, Gondo A, Esaki S, Hayashi A, Nakao T. Ratio of urinary potassium to urinary sodium and the potassium and edema status in nephrotic syndrome. Intern Med. 2011;50(6):551–5. https://doi.org/10.2169/internalmedicine.50.4537.

    Article  CAS  PubMed  Google Scholar 

  78. Pharmacologic Treatment of Hypertension. Bryan Williams, Megan Borkum. Comprehensive clinical nephrology. Feehally J et al. Elsevier 2019.

  79. Costello JM, Almodovar MC. Emergency care for infants and children with acute cardiac disease. Clin Pediatr Emerg Med. 2007;8(3):145–55.

    Article  Google Scholar 

  80. Carpenter RJ, Kouyoumjian S, Moromisato DY, Lieu P, Amirnovin R. Lower-dose, intravenous chlorothiazide is an effective adjunct diuretic to furosemide following pediatric cardiac surgery. J Pediatr Pharmacol Ther. 2020;25(1):31–8. https://doi.org/10.5863/1551-6776-25.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Giefer MJ, Murray KF, Colletti RB. Pathophysiology, diagnosis, and management of pediatric ascites. J Pediatr Gastroenterol Nutr. 2011;52(5):503–13.

    Article  PubMed  Google Scholar 

  82. Van der Vorst MM, Kist JE, van der Heijden AJ, et al. Diuretics in pediatrics: current knowledge and future prospects. Paediatr Drugs. 2006;8(4):245–64.

    Article  PubMed  Google Scholar 

  83. Shimizu M, Ishikawa S, Yachi Y, Muraoka M, Tasaki Y, Iwasaki H, Kuroda M, Ohta K, Yachie A. Tolvaptan therapy for massive edema in a patient with nephrotic syndrome. Pediatr Nephrol. 2014 May;29(5):915–7. https://doi.org/10.1007/s00467-013-2687-1.

    Article  PubMed  Google Scholar 

  84. Saimiya M, Kaku Y, Nishimura M. Efficacy of oral tolvaptan for severe edema and hyponatremia in a patient with refractory nephrotic syndrome. CEN Case Rep. 2021;10(4):523–6. https://doi.org/10.1007/s13730-021-00601-1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Meena J, Hari P, Sinha A, Bagga A. Efficacy and safety of combination therapy with tolvaptan and furosemide in children with nephrotic syndrome and refractory edema: a prospective interventional study. Indian J Pediatr. 2022. https://doi.org/10.1007/s12098-021-03988-y.

  86. Kamiya M, Sato N, Matsuda J, Nozaki A, Akiya M, Sato T, Okazaki H, Takahashi Y, Shimizu W. Predictors of responders for low-dose carperitide monotherapy in patients with acute heart failure. Heart Vessels. 2020 Jan;35(1):59–68. https://doi.org/10.1007/s00380-019-01450-w.

    Article  PubMed  Google Scholar 

  87. Docherty KF, Vaduganathan M, Solomon SD, McMurray JJV. Sacubitril/Valsartan: Neprilysin Inhibition 5 Years After PARADIGM-HF. JACC Heart Fail. 2020;8(10):800–10. https://doi.org/10.1016/j.jchf.2020.06.020 Erratum in: JACC Heart Fail. 2020 Dec;8(12):1057.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Boeing T, da Silva LM, Mariott M, Andrade SF, de Souza P. Diuretic and natriuretic effect of luteolin in normotensive and hypertensive rats: Role of muscarinic acetylcholine receptors. Pharmacol Rep. 2017 Dec;69(6):1121–4. https://doi.org/10.1016/j.pharep.2017.05.010.

    Article  CAS  PubMed  Google Scholar 

  89. Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol. 2012;23:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Teoh CW, Robinson LA, Noone D. Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol. 2015;309(7):F575–82. https://doi.org/10.1152/ajprenal.00229.2015.

    Article  CAS  PubMed  Google Scholar 

  91. Liantonio A, Gramegna G, Camerino GM, Dinardo MM, Scaramuzzi A, Potenza MA, Montagnani M, Procino G, Lasorsa DR, Mastrofrancesco L, Laghezza A, Fracchiolla G, Loiodice F, Perrone MG, Lopedota A, Conte S, Penza R, Valenti G, Svelto M, Camerino DC. In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension? J Hypertens. 2012;30:153–67.

    Article  CAS  PubMed  Google Scholar 

  92. Ashek A, Menzies RI, Mullins LJ, et al. Activation of thiazide-sensitive co-transport by angiotensin II in the cyp1a1-Ren2 hypertensive rat. PLoS ONE. 2012;7:e36311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dong N, Chen S, Wang W, Zhou Y, Wu Q. Corin in clinical laboratory diagnostics. Clin Chim Acta. 2012;413(3-4):378–83. https://doi.org/10.1016/j.cca.2011.10.032.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Kallash.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeid, A., Mohamed, T. & Kallash, M. Management of edema in pediatric nephrotic syndrome – Underfill or overfill?. Curr Pediatr Rep 10, 182–194 (2022). https://doi.org/10.1007/s40124-022-00270-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-022-00270-3

Keywords

Navigation