Skip to main content

Advertisement

Log in

COL4A3 mutation is an independent risk factor for poor prognosis in children with Alport syndrome

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Alport syndrome (AS) is an inherited glomerular disease caused by mutations in COL4A3, COL4A4, or COL4A5. Associations between clinical manifestations and genotype are not yet well defined. Our study aimed to define clinical and genetic characteristics, establish genotype–phenotype correlations, and determine prognosis of AS in children.

Methods

A total of 87 children with AS from 10 pediatric nephrology centers, whom had genetic analyses performed at the Hacettepe University Nephrogenetics Laboratory between February 2017 and February 2019, were included. Data regarding demographics, family history, clinical and laboratory characteristics, histopathological and genetic test results, treatments, and yearly follow-up results were retrospectively analyzed.

Results

Of 87 patients, 16% presented with nephrotic syndrome. In patients with nephrotic syndrome, kidney biopsy findings showed focal segmental glomerulosclerosis (FSGS) in 79%, and COL4A3 mutations were the leading genetic abnormality (50%). Twenty-four percent of all patients progressed to chronic kidney disease (CKD). The rate of progression to CKD and the decline in the glomerular filtration rate of the patients with COL4A3 mutation were higher than other mutation groups (p < 0.001 and p = 0.04, respectively). In kidney survival analysis, nephrotic syndrome presentation, histopathology of FSGS, COL4A3 mutations, and autosomal recessive inheritance were found as independent risk factors for earlier progression to CKD. Cyclosporin A treatment did not improve kidney survival.

Conclusions

We emphasize that genetic testing is important for patients suspected as having AS. Furthermore, COL4A mutations should be considered in patients with FSGS and steroid-resistant nephrotic syndrome. This approach will shed light on the prognosis of patients and help with definitive diagnosis, preventing unnecessary and potentially harmful medications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alport AC (1927) Hereditary familial congenital haemorrhagic nephritis. Br Med J 1:504–506

    Article  CAS  Google Scholar 

  2. Kashtan CE (1999) Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Medicine 78:338–360

    Article  CAS  Google Scholar 

  3. Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimaru R, Miwa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K (2019) A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23:158–168

    Article  Google Scholar 

  4. Rheault MN, Kashtan C (2015) Inherited glomerular diseases. In: Pediatric nephrology, 7th edn. Springer, Berlin, pp 777–803

    Google Scholar 

  5. Hattori M, Sako M, Kaneko T, Ashida A, Matsunaga A, Igarashi T, Itami N, Ohta T, Gotoh Y, Satomura K, Honda M, Igarashi T (2015) End-stage renal disease in Japanese children: a nationwide survey during 2006-2011. Clin Exp Nephrol 19:933–938

    Article  Google Scholar 

  6. Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA (2014) Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86:1253–1259

    Article  CAS  Google Scholar 

  7. Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, Venkat-Raman G, Ennis S (2016) Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 31:961–970

    Article  CAS  Google Scholar 

  8. Andrassy KM (2013) Comments on ‘KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’. Kidney Int 84:622–623

    Article  CAS  Google Scholar 

  9. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843

    Article  Google Scholar 

  10. Yamamura T, Nozu K, Fu XJ, Nozu Y, Ye MJ, Shono A, Yamanouchi S, Minamikawa S, Morisada N, Nakanishi K, Shima Y, Yoshikawa N, Ninchoji T, Morioka I, Kaito H, Iijima K (2017) Natural history and genotype-phenotype correlation in female X-linked Alport syndrome. Kidney Int Rep 2:850–855

    Article  Google Scholar 

  11. Xie J, Wu X, Ren H, Wang W, Wang Z, Pan X, Hao X, Tong J, Ma J, Ye Z, Meng G, Zhu Y, Kiryluk K, Kong X, Hu L, Chen N (2014) COL4A3 mutations cause focal segmental glomerulosclerosis. J Mol Cell Biol 6:498–505

    Article  CAS  Google Scholar 

  12. Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, Lovric S, Ashraf S, Rao J, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Schneider R, Gee HY, Schmidt JM, Vivante A, van der Ven AT, Ityel H, Chen J, Sadowski CE, Kohl S, Pabst WL, Nakayama M, Somers MJG, Rodig NM, Daouk G, Baum M, Stein DR, Ferguson MA, Traum AZ, Soliman NA, Kari JA, El Desoky S, Fathy H, Zenker M, Bakkaloglu SA, Müller D, Noyan A, Ozaltin F, Cadnapaphornchai MA, Hashmi S, Hopcian J, Kopp JB, Benador N, Bockenhauer D, Bogdanovic R, Stajić N, Chernin G, Ettenger R, Fehrenbach H, Kemper M, Munarriz RL, Podracka L, Büscher R, Serdaroglu E, Tasic V, Mane S, Lifton RP, Braun DA, Hildebrandt F (2018) Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13:53–62

    Article  CAS  Google Scholar 

  13. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  CAS  Google Scholar 

  14. Rajpar MH, McDermott B, Kung L, Eardley R, Knowles L, Heeran M, Thornton DJ, Wilson R, Bateman JF, Poulsom R, Arvan P, Kadler KE, Briggs MD, Boot-Handford RP (2009) Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet 5:e1000691

    Article  Google Scholar 

  15. Pieri M, Stefanou C, Zaravinos A, Erguler K, Stylianou K, Lapathitis G, Karaiskos C, Savva I, Paraskeva R, Dweep H, Sticht C, Anastasiadou N, Zouvani I, Goumenos D, Felekkis K, Saleem M, Voskarides K, Gretz N, Deltas C (2014) Evidence for activation of the unfolded protein response in collagen IV nephropathies. J Am Soc Nephrol 25:260–275

    Article  CAS  Google Scholar 

  16. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Verellen C, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schröder C, Sanak M, Krejcova S, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2000) X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 11:649–657

    CAS  PubMed  Google Scholar 

  17. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, Weber M, Gross O, Netzer KO, Flinter F, Pirson Y, Dahan K, Wieslander J, Persson U, Tryggvason K, Martin P, Hertz JM, Schröder C, Sanak M, Carvalho MF, Saus J, Antignac C, Smeets H, Gubler MC (2003) X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14:2603–2610

    Article  Google Scholar 

  18. Wang Y, Sivakumar V, Mohammad M, Colville D, Storey H, Flinter F, Dagher H, Savige J (2014) Clinical and genetic features in autosomal recessive and X-linked Alport syndrome. Pediatr Nephrol 29:391–396

    Article  Google Scholar 

  19. Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y, Ye MJ, Imafuku A, Miura K, Yamamura T, Minamikawa S, Shono A, Ninchoji T, Morioka I, Nakanishi K, Yoshikawa N, Kaito H, Iijima K (2016) Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant Alport syndrome. Clin J Am Soc Nephrol 11:1441–1449

    Article  CAS  Google Scholar 

  20. Marcocci E, Uliana V, Bruttini M, Artuso R, Silengo MC, Zerial M, Bergesio F, Amoroso A, Savoldi S, Pennesi M, Giachino D, Rombolà G, Fogazzi GB, Rosatelli C, Martinhago CD, Carmellini M, Mancini R, Di Costanzo G, Longo I, Renieri A, Mari F (2009) Autosomal dominant Alport syndrome: molecular analysis of the COL4A4 gene and clinical outcome. Nephrol Dial Transplant 24:1464–1471

    Article  CAS  Google Scholar 

  21. Zhang Y, Ding J, Zhang H, Yao Y, Xiao H, Wang S, Wang F (2019) Effect of heterozygous pathogenic COL4A3 or COL4A4 variants on patients with X-linked Alport syndrome. Mol Genet Genomic Med 7:e647

    Article  Google Scholar 

  22. Bullich G, Trujillano D, Santín S, Ossowski S, Mendizábal S, Fraga G, Madrid Á, Ariceta G, Ballarín J, Torra R, Estivill X, Ars E (2015) Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Hum Genet 23:1192–1199

    Article  CAS  Google Scholar 

  23. Bekheirnia MR, Reed B, Gregory MC, McFann K, Shamshirsaz AA, Masoumi A, Schrier RW (2010) Genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol 21:876–883

    Article  CAS  Google Scholar 

  24. Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tönshoff B, Höcker B, Wygoda S, Ehrich JH, Pape L, Konrad M, Rascher W, Dötsch J, Müller-Wiefel DE, Hoyer P (2012) Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 81:494–501

    Article  CAS  Google Scholar 

  25. Webb NJ, Lam C, Shahinfar S, Strehlau J, Wells TG, Gleim GW, Le Bailly De Tilleghem C (2011) Efficacy and safety of losartan in children with Alport syndrome—results from a subgroup analysis of a prospective, randomized, placebo- or amlodipine-controlled trial. Nephrol Dial Transplant 26:2521–2526

    Article  CAS  Google Scholar 

  26. Webb NJ, Shahinfar S, Wells TG, Massaad R, Gleim GW, McCrary Sisk C, Lam C (2013) Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr Nephrol 28:737–743

    Article  Google Scholar 

  27. Savige J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F (2013) Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 24:364–375

    Article  CAS  Google Scholar 

  28. Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B, Rheault M, Licht C (2013) Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 28:5–11

    Article  Google Scholar 

  29. Callís L, Vila A, Nieto J, Fortuny G (1992) Effect of cyclosporin A on proteinuria in patients with Alport’s syndrome. Pediatr Nephrol 6:140–144

    Article  Google Scholar 

  30. Charbit M, Gubler MC, Dechaux M, Gagnadoux MF, Grünfeld JP, Niaudet P (2007) Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol 22:57–63

    Article  Google Scholar 

  31. Massella L, Muda AO, Legato A, Di Zazzo G, Giannakakis K, Emma F (2010) Cyclosporine A treatment in patients with Alport syndrome: a single-center experience. Pediatr Nephrol 25:1269–1275

    Article  Google Scholar 

  32. Gross O, Kashtan CE (2009) Treatment of Alport syndrome: beyond animal models. Kidney Int 76:599–603

    Article  CAS  Google Scholar 

  33. Heidet L, Gubler MC (2016) Alport syndrome: hereditary nephropathy associated with mutations in genes coding for type IV collagen chains. Nephrol Ther 12:544–551

    Article  Google Scholar 

Download references

Acknowledgments

English revision was provided by a native speaker from the Hacettepe University Technology Transfer Center (Job code HTTTM_529).

Author information

Authors and Affiliations

Authors

Contributions

RT, BG, FO, and AD: Research formulation and study design

RT, GO, SS, OS, ZBO, FKE, CC, BKD, AS, SY, HA, and AA: Data acquisition

RT, BG, FO, AD, GO, and MH: Data analysis/interpretation

FO and EA: Genetic analysis

MH, BG, and GO: Statistical analysis

RT: Supervision/mentorship

Each of the authors contributed important intellectual content during manuscript drafting and/or revision and approved the final version. Furthermore, they all accept responsibility for the overall work, including the accuracy and integrity of all portions of the work.

Corresponding author

Correspondence to Rezan Topaloglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study protocol was approved by the Non-Interventional Clinical Researches Ethics Board of Hacettepe University (KA 19073).

Consent to participate

Written informed consent was provided by the patients’ parents, as well as by patients aged > 10 years.

Consent for publication

Patients signed informed consent regarding publishing their data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, G., Gulhan, B., Atayar, E. et al. COL4A3 mutation is an independent risk factor for poor prognosis in children with Alport syndrome. Pediatr Nephrol 35, 1941–1952 (2020). https://doi.org/10.1007/s00467-020-04574-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04574-8

Keywords

Navigation