Skip to main content
Log in

A no-nonsense approach to hereditary kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    CAS  PubMed  Google Scholar 

  2. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047

    CAS  PubMed  Google Scholar 

  3. Hildebrandt F (2010) Genetic kidney diseases. Lancet 375:1287–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Connaughton DM, Hildebrandt F (2019) Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfz028

  5. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2:467–469

    CAS  PubMed  Google Scholar 

  6. Brasell EJ, Chu L, El Kares R, Seo JH, Loesch R, Iglesias DM, Goodyer P (2019) The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr Nephrol 34:873–881

    PubMed  Google Scholar 

  7. Brendel C, Belakhov V, Werner H, Wegener E, Gartner J, Nudelman I, Baasov T, Huppke P (2011) Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. J Mol Med (Berl) 89:389–398

    CAS  Google Scholar 

  8. Wang D, Belakhov V, Kandasamy J, Baasov T, Li SC, Li YT, Bedwell DM, Keeling KM (2012) The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Mol Genet Metab 105:116–125

    CAS  PubMed  Google Scholar 

  9. Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, Dai Y, Belakhov V, Shalev M, Chen F, Schacht J, J Bridges R, Baasov T, Hong J, Bedwell DM, Rowe SM (2014) Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Respir Cell Mol Biol 50:805–816

    PubMed  PubMed Central  Google Scholar 

  10. Hock R, Anderson RJ (1995) Prevention of drug-induced nephrotoxicity in the intensive care unit. J Crit Care 10:33–43

    CAS  PubMed  Google Scholar 

  11. Launay-Vacher V, Aapro M, De Castro G Jr, Cohen E, Deray G, Dooley M, Humphreys B, Lichtman S, Rey J, Scotte F, Wildiers H, Sprangers B (2015) Renal effects of molecular targeted therapies in oncology: a review by the Cancer and the Kidney International Network (C-KIN). Ann Oncol 26:1677–1684

    CAS  PubMed  Google Scholar 

  12. Swan SK (1997) Aminoglycoside nephrotoxicity. Semin Nephrol 17:27–33

    CAS  PubMed  Google Scholar 

  13. Qian Y, Guan MX (2009) Interaction of aminoglycosides with human mitochondrial 12S rRNA carrying the deafness-associated mutation. Antimicrob Agents Chemother 53:4612–4618

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shulman E, Belakhov V, Wei G, Kendall A, Meyron-Holtz EG, Ben-Shachar D, Schacht J, Baasov T (2014) Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases. J Biol Chem 289:2318–2330

    CAS  PubMed  Google Scholar 

  15. Huth ME, Ricci AJ, Cheng AG (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011:937861

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bacino C, Prezant TR, Bu X, Fournier P, Fischel-Ghodsian N (1995) Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness. Pharmacogenetics 5:165–172

    CAS  PubMed  Google Scholar 

  17. Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281:28–37

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, Schacht J, Pilch DS, Ben-Yosef T, Baasov T (2009) Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem 52:2836–2845

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vecsler M, Ben Zeev B, Nudelman I, Anikster Y, Simon AJ, Amariglio N, Rechavi G, Baasov T, Gak E (2011) Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations. PLoS One 6:e20733

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sabbavarapu NM, Shavit M, Degani Y, Smolkin B, Belakhov V, Baasov T (2016) Design of novel aminoglycoside derivatives with enhanced suppression of diseases-causing nonsense mutations. ACS Med Chem Lett 7:418–423

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Keeling KM, Xue X, Gunn G, Bedwell DM (2014) Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15:371–394

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Loughran G, Chou MY, Ivanov IP, Jungreis I, Kellis M, Kiran AM, Baranov PV, Atkins JF (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Floquet C, Hatin I, Rousset JP, Bidou L (2012) Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet 8:e1002608

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cassan M, Rousset JP (2001) UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2:3

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pechere JC, Dugal R (1979) Clinical pharmacokinetics of aminoglycoside antibiotics. Clin Pharmacokinet 4:170–199

    CAS  PubMed  Google Scholar 

  26. Tzovaras V, Tsimihodimos V, Kostara C, Mitrogianni Z, Elisaf M (2011) Aminoglycoside-induced nephrotoxicity studied by proton magnetic resonance spectroscopy of urine. Nephrol Dial Transplant 26:3219–3224

    CAS  PubMed  Google Scholar 

  27. Nagai J, Takano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metab Pharmacokinet 19:159–170

    CAS  PubMed  Google Scholar 

  28. Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagai J, Takano M (2014) Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol 90:331–337

    CAS  PubMed  Google Scholar 

  30. Nagai J, Tanaka H, Nakanishi N, Murakami T, Takano M (2001) Role of megalin in renal handling of aminoglycosides. Am J Physiol Renal Physiol 281:F337–F344

    CAS  PubMed  Google Scholar 

  31. Gomez-Grau M, Garrido E, Cozar M, Rodriguez-Sureda V, Dominguez C, Arenas C, Gatti RA, Cormand B, Grinberg D, Vilageliu L (2015) Evaluation of aminoglycoside and non-aminoglycoside compounds for stop-codon readthrough therapy in four lysosomal storage diseases. PLoS One 10:e0135873

    PubMed  PubMed Central  Google Scholar 

  32. Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van't Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    CAS  PubMed  Google Scholar 

  33. Kalatzis V, Cherqui S, Antignac C, Gasnier B (2001) Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J 20:5940–5949

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gahl WA, Bashan N, Tietze F, Bernardini I, Schulman JD (1982) Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217:1263–1265

    CAS  PubMed  Google Scholar 

  35. Park MA, Pejovic V, Kerisit KG, Junius S, Thoene JG (2006) Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase Cdelta. J Am Soc Nephrol 17:3167–3175

    CAS  PubMed  Google Scholar 

  36. Mahoney CP, Striker GE (2000) Early development of the renal lesions in infantile cystinosis. Pediatr Nephrol 15:50–56

    CAS  PubMed  Google Scholar 

  37. Nesterova G, Gahl W (2008) Nephropathic cystinosis: late complications of a multisystemic disease. Pediatr Nephrol 23:863–878

    PubMed  Google Scholar 

  38. Yeetong P, Tongkobpetch S, Kingwatanakul P, Deekajorndech T, Bernardini IM, Suphapeetiporn K, Gahl WA, Shotelersuk V (2012) Two novel CTNS mutations in cystinosis patients in Thailand. Gene 499:323–325

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shotelersuk V, Larson D, Anikster Y, McDowell G, Lemons R, Bernardini I, Guo J, Thoene J, Gahl WA (1998) CTNS mutations in an American-based population of cystinosis patients. Am J Hum Genet 63:1352–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Haggar M (2013) Cystinosis as a lysosomal storage disease with multiple mutant alleles: Phenotypic-genotypic correlations. World J Nephrol 2:94–102

    PubMed  PubMed Central  Google Scholar 

  41. Soliman NA, Elmonem MA, van den Heuvel L, Abdel Hamid RH, Gamal M, Bongaers I, Marie S, Levtchenko E (2014) Mutational Spectrum of the CTNS Gene in Egyptian Patients with Nephropathic Cystinosis. JIMD Rep 14:87–97

    PubMed  PubMed Central  Google Scholar 

  42. Kalatzis V, Cohen-Solal L, Cordier B, Frishberg Y, Kemper M, Nuutinen EM, Legrand E, Cochat P, Antignac C (2002) Identification of 14 novel CTNS mutations and characterization of seven splice site mutations associated with cystinosis. Hum Mutat 20:439–446

    CAS  PubMed  Google Scholar 

  43. Sadeghipour F, Basiratnia M, Derakhshan A, Fardaei M (2017) Mutation analysis of the CTNS gene in Iranian patients with infantile nephropathic cystinosis: identification of two novel mutations. Hum Genome Var 4:17038

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ivanova EA, van den Heuvel LP, Elmonem MA, De Smedt H, Missiaen L, Pastore A, Mekahli D, Bultynck G, Levtchenko EN (2016) Altered mTOR signalling in nephropathic cystinosis. J Inherit Metab Dis 39:457–464

    CAS  PubMed  Google Scholar 

  45. Ivanova EA, De Leo MG, Van Den Heuvel L, Pastore A, Dijkman H, De Matteis MA, Levtchenko EN (2015) Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS One 10:e0120998

    PubMed  PubMed Central  Google Scholar 

  46. Anikster Y, Lucero C, Guo J, Huizing M, Shotelersuk V, Bernardini I, McDowell G, Iwata F, Kaiser-Kupfer MI, Jaffe R, Thoene J, Schneider JA, Gahl WA (2000) Ocular nonnephropathic cystinosis: clinical, biochemical, and molecular correlations. Pediatr Res 47:17–23

    CAS  PubMed  Google Scholar 

  47. Sumorok N, Goldfarb DS (2013) Update on cystinuria. Curr Opin Nephrol Hypertens 22:427–431

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Parvex P, Rozen R, Dziarmaga A, Goodyer P (2003) Studies of urinary cystine precipitation in vitro: ontogeny of cystine nephrolithiasis and identification of meso-2,3-dimercaptosuccinic acid as a potential therapy for cystinuria. Mol Genet Metab 80:419–425

    CAS  PubMed  Google Scholar 

  49. Trinchieri A, Dormia G, Montanari E, Zanetti G (2004) Cystinuria: definition, epidemiology and clinical aspects. Arch Ital Urol Androl 76:129–134

    PubMed  Google Scholar 

  50. Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, Palacin M (2010) Pathophysiology and treatment of cystinuria. Nat Rev Nephrol 6:424–434

    CAS  PubMed  Google Scholar 

  51. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation Consortium (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JH, Park E, Hyun HS, Lee BH, Kim GH, Lee JH, Park YS, Kang HG, Ha IS, Cheong HI (2017) Genotype and phenotype analysis in pediatric patients with cystinuria. J Korean Med Sci 32:310–314

    PubMed  Google Scholar 

  53. Gaildrat P, Lebbah S, Tebani A, Sudrie-Arnaud B, Tostivint I, Bollee G, Tubeuf H, Charles T, Bertholet-Thomas A, Goldenberg A, Barbey F, Martins A, Saugier-Veber P, Frebourg T, Knebelmann B, Bekri S (2017) Clinical and molecular characterization of cystinuria in a French cohort: relevance of assessing large-scale rearrangements and splicing variants. Mol Genet Genomic Med 5:373–389

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pras E, Raben N, Golomb E, Arber N, Aksentijevich I, Schapiro JM, Harel D, Katz G, Liberman U, Pras M, Kastner DL (1995) Mutations in the SLC3A1 transporter gene in cystinuria. Am J Hum Genet 56:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rhodes HL, Yarram-Smith L, Rice SJ, Tabaksert A, Edwards N, Hartley A, Woodward MN, Smithson SL, Tomson C, Welsh GI, Williams M, Thwaites DT, Sayer JA, Coward RJ (2015) Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin J Am Soc Nephrol 10:1235–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Di Perna M, Louizou E, Fischetti L, Dedoussis GV, Stanziale P, Michelakakis H, Zelante L, Pras E, Bisceglia L (2008) Twenty-four novel mutations identified in a cohort of 85 patients by direct sequencing of the SLC3A1 and SLC7A9 cystinuria genes. Genet Test 12:351–355

    PubMed  Google Scholar 

  57. Font-Llitjos M, Jimenez-Vidal M, Bisceglia L, Di Perna M, de Sanctis L, Rousaud F, Zelante L, Palacin M, Nunes V (2005) New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet 42:58–68

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Font MA, Feliubadalo L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, d'Adamo AP, Zelante L, Gasparini P, Bassi MT, George AL Jr, Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernandez E, Zorzano A, Bertran J, Palacin M, International Cystinuria Consortium (2001) Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet 10:305–316

    CAS  PubMed  Google Scholar 

  59. Skopkova Z, Hrabincova E, Stastna S, Kozak L, Adam T (2005) Molecular genetic analysis of SLC3A1 and SLC7A9 genes in Czech and Slovak cystinuric patients. Ann Hum Genet 69:501–507

    CAS  PubMed  Google Scholar 

  60. Leclerc D, Boutros M, Suh D, Wu Q, Palacin M, Ellis JR, Goodyer P, Rozen R (2002) SLC7A9 mutations in all three cystinuria subtypes. Kidney Int 62:1550–1559

    CAS  PubMed  Google Scholar 

  61. Hinoshita F, Noma T, Tomura S, Shiigai T, Yata J (1990) Decreased production and responsiveness of interleukin 2 in lymphocytes of patients with nephrotic syndrome. Nephron 54:122–126

    CAS  PubMed  Google Scholar 

  62. Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC (2018) Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 11:179–190

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582

    CAS  PubMed  Google Scholar 

  64. Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJ, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA (2017) Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 91:937–947

    PubMed  Google Scholar 

  65. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsvetkov D, Hohmann M, Anistan YM, Mannaa M, Harteneck C, Rudolph B, Gollasch M (2016) A CD2AP mutation associated with focal segmental glomerulosclerosis in young adulthood. Clin Med Insights Case Rep 9:15–19

    PubMed  PubMed Central  Google Scholar 

  67. Trautmann A, Lipska-Zietkiewicz BS, Schaefer F (2018) Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: The PodoNet Registry. Front Pediatr 6:200

    PubMed  PubMed Central  Google Scholar 

  68. Caridi G, Trivelli A, Sanna-Cherchi S, Perfumo F, Ghiggeri GM (2010) Familial forms of nephrotic syndrome. Pediatr Nephrol 25:241–252

    PubMed  PubMed Central  Google Scholar 

  69. Zhang H, Wang F, Liu X, Zhong X, Yao Y, Xiao H (2017) Steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 and ADCK4 genes in two Chinese siblings. Intractable Rare Dis Res 6:299–303

    PubMed  PubMed Central  Google Scholar 

  70. Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, Fang H, Song X, Cattran DC, Avila-Casado C, Paterson AD, Nitschke P, Bole-Feysot C, Cochat P, Esteve-Rudd J, Haberberger B, Allen SJ, Zhou W, Airik R, Otto EA, Barua M, Al-Hamed MH, Kari JA, Evans J, Bierzynska A, Saleem MA, Bockenhauer D, Kleta R, El Desoky S, Hacihamdioglu DO, Gok F, Washburn J, Wiggins RC, Choi M, Lifton RP, Levy S, Han Z, Salviati L, Prokisch H, Williams DS, Pollak M, Clarke CF, Pei Y, Antignac C, Hildebrandt F (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F (2013) ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest 123:3243–3253

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lowik MM, Groenen PJ, Pronk I, Lilien MR, Goldschmeding R, Dijkman HB, Levtchenko EN, Monnens LA, van den Heuvel LP (2007) Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int 72:1198–1203

    CAS  PubMed  Google Scholar 

  73. Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA (2014) Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86:1253–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dagher H, Yan Wang Y, Fassett R, Savige J (2002) Three novel COL4A4 mutations resulting in stop codons and their clinical effects in autosomal recessive Alport syndrome. Hum Mutat 20:321–322

    PubMed  Google Scholar 

  75. Liu JH, Wei XX, Li A, Cui YX, Xia XY, Qin WS, Zhang MC, Gao EZ, Sun J, Gao CL, Liu FX, Wu QY, Li WW, Asan LZH, Li XJ (2017) Novel mutations in COL4A3, COL4A4, and COL4A5 in Chinese patients with Alport Syndrome. PLoS One 12:e0177685

    PubMed  PubMed Central  Google Scholar 

  76. Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, Xie LX, Salviati L, Hurd TW, Vega-Warner V, Killen PD, Raphael Y, Ashraf S, Ovunc B, Schoeb DS, McLaughlin HM, Airik R, Vlangos CN, Gbadegesin R, Hinkes B, Saisawat P, Trevisson E, Doimo M, Casarin A, Pertegato V, Giorgi G, Prokisch H, Rotig A, Nurnberg G, Becker C, Wang S, Ozaltin F, Topaloglu R, Bakkaloglu A, Bakkaloglu SA, Muller D, Beissert A, Mir S, Berdeli A, Varpizen S, Zenker M, Matejas V, Santos-Ocana C, Navas P, Kusakabe T, Kispert A, Akman S, Soliman NA, Krick S, Mundel P, Reiser J, Nurnberg P, Clarke CF, Wiggins RC, Faul C, Hildebrandt F (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan J, Fu R, Ren F, He J, Wang S, Gou M (2018) A case report of CRB2 mutation identified in a Chinese boy with focal segmental glomerulosclerosis. Medicine (Baltimore) 97:e12362

    CAS  Google Scholar 

  78. Eng CM, Niehaus DJ, Enriquez AL, Burgert TS, Ludman MD, Desnick RJ (1994) Fabry disease: twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase A gene. Hum Mol Genet 3:1795–1799

    CAS  PubMed  Google Scholar 

  79. Zemrani B, Cachat F, Bonny O, Giannoni E, Durig J, Fellmann F, Chehade H (2016) A novel LAMB2 gene mutation associated with a severe phenotype in a neonate with Pierson syndrome. Eur J Med Res 21:19

    PubMed  PubMed Central  Google Scholar 

  80. Balreira A, Gaspar P, Caiola D, Chaves J, Beirao I, Lima JL, Azevedo JE, Miranda MC (2008) A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum Mol Genet 17:2238–2243

    CAS  PubMed  Google Scholar 

  81. Mele C, Iatropoulos P, Donadelli R, Calabria A, Maranta R, Cassis P, Buelli S, Tomasoni S, Piras R, Krendel M, Bettoni S, Morigi M, Delledonne M, Pecoraro C, Abbate I, Capobianchi MR, Hildebrandt F, Otto E, Schaefer F, Macciardi F, Ozaltin F, Emre S, Ibsirlioglu T, Benigni A, Remuzzi G, Noris M, PodoNet Consortium (2011) MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 365:295–306

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Beltcheva O, Martin P, Lenkkeri U, Tryggvason K (2001) Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum Mutat 17:368–373

    CAS  PubMed  Google Scholar 

  83. Schoeb DS, Chernin G, Heeringa SF, Matejas V, Held S, Vega-Warner V, Bockenhauer D, Vlangos CN, Moorani KN, Neuhaus TJ, Kari JA, MacDonald J, Saisawat P, Ashraf S, Ovunc B, Zenker M, Hildebrandt F, Gesselschaft fur Paediatrische Nephrologie (GPN) Study Group (2010) Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol Dial Transplant 25:2970–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sako M, Nakanishi K, Obana M, Yata N, Hoshii S, Takahashi S, Wada N, Takahashi Y, Kaku Y, Satomura K, Ikeda M, Honda M, Iijima K, Yoshikawa N (2005) Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int 67:1248–1255

    CAS  PubMed  Google Scholar 

  85. Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, Antignac CK, Kashtan CE, Homberg C, Olsen A, Kestila M, Tryggvason K (1999) Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet 64:51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Philippe A, Nevo F, Esquivel EL, Reklaityte D, Gribouval O, Tete MJ, Loirat C, Dantal J, Fischbach M, Pouteil-Noble C, Decramer S, Hoehne M, Benzing T, Charbit M, Niaudet P, Antignac C (2008) Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol 19:1871–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Santin S, Garcia-Maset R, Ruiz P, Gimenez I, Zamora I, Pena A, Madrid A, Camacho JA, Fraga G, Sanchez-Moreno A, Cobo MA, Bernis C, Ortiz A, de Pablos AL, Pintos G, Justa ML, Hidalgo-Barquero E, Fernandez-Llama P, Ballarin J, Ars E, Torra R, FSGS Spanish Study Group (2009) Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int 76:1268–1276

    CAS  PubMed  Google Scholar 

  88. Al-Hamed MH, Al-Sabban E, Al-Mojalli H, Al-Harbi N, Faqeih E, Al Shaya H, Alhasan K, Al-Hissi S, Rajab M, Edwards N, Al-Abbad A, Al-Hassoun I, Sayer JA, Meyer BF (2013) A molecular genetic analysis of childhood nephrotic syndrome in a cohort of Saudi Arabian families. J Hum Genet 58:480–489

    CAS  PubMed  Google Scholar 

  89. Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Moriniere V, Campait R, Ars E, Brackman D, Dantal J, Eckart P, Gigante M, Lipska BS, Liutkus A, Megarbane A, Mohsin N, Ozaltin F, Saleem MA, Schaefer F, Soulami K, Torra R, Garcelon N, Mollet G, Dahan K, Antignac C (2014) NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum Mutat 35:178–186

    CAS  PubMed  Google Scholar 

  90. Sun H, Zhou W, Wang J, Yin L, Lu Y, Fu Q (2009) A novel mutation in NPHS2 gene identified in a Chinese pedigree with autosomal recessive steroid-resistant nephrotic syndrome. Pathology 41:661–665

    CAS  PubMed  Google Scholar 

  91. Lipska BS, Iatropoulos P, Maranta R, Caridi G, Ozaltin F, Anarat A, Balat A, Gellermann J, Trautmann A, Erdogan O, Saeed B, Emre S, Bogdanovic R, Azocar M, Balasz-Chmielewska I, Benetti E, Caliskan S, Mir S, Melk A, Ertan P, Baskin E, Jardim H, Davitaia T, Wasilewska A, Drozdz D, Szczepanska M, Jankauskiene A, Higuita LM, Ardissino G, Ozkaya O, Kuzma-Mroczkowska E, Soylemezoglu O, Ranchin B, Medynska A, Tkaczyk M, Peco-Antic A, Akil I, Jarmolinski T, Firszt-Adamczyk A, Dusek J, Simonetti GD, Gok F, Gheissari A, Emma F, Krmar RT, Fischbach M, Printza N, Simkova E, Mele C, Ghiggeri GM, Schaefer F, PodoNet Consortium (2013) Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int 84:206–213

    CAS  PubMed  Google Scholar 

  92. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354

    CAS  PubMed  Google Scholar 

  93. Chernin G, Heeringa SF, Vega-Warner V, Schoeb DS, Nurnberg P, Hildebrandt F (2010) Adequate use of allele frequencies in Hispanics--a problem elucidated in nephrotic syndrome. Pediatr Nephrol 25:261–266

    PubMed  Google Scholar 

  94. Tonna SJ, Needham A, Polu K, Uscinski A, Appel GB, Falk RJ, Katz A, Al-Waheeb S, Kaplan BS, Jerums G, Savige J, Harmon J, Zhang K, Curhan GC, Pollak MR (2008) NPHS2 variation in focal and segmental glomerulosclerosis. BMC Nephrol 9:13

    PubMed  PubMed Central  Google Scholar 

  95. Mao J, Zhang Y, Du L, Dai Y, Gu W, Liu A, Shang S, Liang L (2007) NPHS1 and NPHS2 gene mutations in Chinese children with sporadic nephrotic syndrome. Pediatr Res 61:117–122

    CAS  PubMed  Google Scholar 

  96. Kerti A, Csohany R, Szabo A, Arkossy O, Sallay P, Moriniere V, Vega-Warner V, Nyiro G, Lakatos O, Szabo T, Lipska BS, Schaefer F, Antignac C, Reusz G, Tulassay T, Tory K (2013) NPHS2 p.V290 M mutation in late-onset steroid-resistant nephrotic syndrome. Pediatr Nephrol 28:751–757

    PubMed  Google Scholar 

  97. Berdeli A, Mir S, Yavascan O, Serdaroglu E, Bak M, Aksu N, Oner A, Anarat A, Donmez O, Yildiz N, Sever L, Tabel Y, Dusunsel R, Sonmez F, Cakar N (2007) NPHS2 (podicin) mutations in Turkish children with idiopathic nephrotic syndrome. Pediatr Nephrol 22:2031–2040

    PubMed  Google Scholar 

  98. Weber S, Gribouval O, Esquivel EL, Moriniere V, Tete MJ, Legendre C, Niaudet P, Antignac C (2004) NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 66:571–579

    CAS  PubMed  Google Scholar 

  99. Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, Caputo V, Toka HR, Charoonratana VT, Tartaglia M, Pollak MR (2014) Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol 25:1942–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Boyer O, Benoit G, Gribouval O, Nevo F, Pawtowski A, Bilge I, Bircan Z, Deschenes G, Guay-Woodford LM, Hall M, Macher MA, Soulami K, Stefanidis CJ, Weiss R, Loirat C, Gubler MC, Antignac C (2010) Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. J Med Genet 47:445–452

    CAS  PubMed  Google Scholar 

  101. Ismaili K, Pawtowski A, Boyer O, Wissing KM, Janssen F, Hall M (2009) Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr Nephrol 24:287–294

    PubMed  Google Scholar 

  102. Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, Andre JL, Bogdanovic R, Burguet A, Cockfield S, Cordeiro I, Frund S, Illies F, Joseph M, Kaitila I, Lama G, Loirat C, McLeod DR, Milford DV, Petty EM, Rodrigo F, Saraiva JM, Schmidt B, Smith GC, Spranger J, Stein A, Thiele H, Tizard J, Weksberg R, Lupski JR, Stockton DW (2002) Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 30:215–220

    CAS  PubMed  Google Scholar 

  103. Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferre M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C (2014) Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 95:637–648

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lipska BS, Ranchin B, Iatropoulos P, Gellermann J, Melk A, Ozaltin F, Caridi G, Seeman T, Tory K, Jankauskiene A, Zurowska A, Szczepanska M, Wasilewska A, Harambat J, Trautmann A, Peco-Antic A, Borzecka H, Moczulska A, Saeed B, Bogdanovic R, Kalyoncu M, Simkova E, Erdogan O, Vrljicak K, Teixeira A, Azocar M, Schaefer F, PodoNet Consortium (2014) Genotype-phenotype associations in WT1 glomerulopathy. Kidney Int 85:1169–1178

    CAS  PubMed  Google Scholar 

  105. Shibata R, Hashiguchi A, Sakamoto J, Yamada T, Umezawa A, Hata J (2002) Correlation between a specific Wilms tumour suppressor gene (WT1) mutation and the histological findings in Wilms tumour (WT). J Med Genet 39:e83

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Prabakaran T, Nielsen R, Larsen JV, Sorensen SS, Feldt-Rasmussen U, Saleem MA, Petersen CM, Verroust PJ, Christensen EI (2011) Receptor-mediated endocytosis of alpha-galactosidase A in human podocytes in Fabry disease. PLoS One 6:e25065

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Prabakaran T, Christensen EI, Nielsen R, Verroust PJ (2012) Cubilin is expressed in rat and human glomerular podocytes. Nephrol Dial Transplant 27:3156–3159

    CAS  PubMed  Google Scholar 

  108. Yamazaki H, Saito A, Ooi H, Kobayashi N, Mundel P, Gejyo F (2004) Differentiation-induced cultured podocytes express endocytically active megalin, a heymann nephritis antigen. Nephron Exp Nephrol 96:e52–e58

    CAS  PubMed  Google Scholar 

  109. Kashtan C (2017) Alport syndrome: facts and opinions. F1000Res 6:50

    PubMed  PubMed Central  Google Scholar 

  110. Kashtan CE (1993) Alport Syndrome and Thin Basement Membrane Nephropathy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A (eds) GeneReviews((R)), Seattle

  111. Watson S, Bush JS (2018) Alport syndrome. StatPearls, Treasure Island

    Google Scholar 

  112. Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusco A, Bosio M, Massella L, Lavoratti G, Roccatello D, Frasca G, Mazzucco G, Muda AO, Conti M, Fasciolo F, Arrondel C, Heidet L, Renieri A, De Marchi M (2002) COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int 61:1947–1956

    CAS  PubMed  Google Scholar 

  113. Lemmink HH, Mochizuki T, van den Heuvel LP, Schroder CH, Barrientos A, Monnens LA, van Oost BA, Brunner HG, Reeders ST, Smeets HJ (1994) Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum Mol Genet 3:1269–1273

    CAS  PubMed  Google Scholar 

  114. Nagel M, Nagorka S, Gross O (2005) Novel COL4A5, COL4A4, and COL4A3 mutations in Alport syndrome. Hum Mutat 26:60

    PubMed  Google Scholar 

  115. Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA (2013) COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 24:1945–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Renieri A, Bruttini M, Galli L, Zanelli P, Neri T, Rossetti S, Turco A, Heiskari N, Zhou J, Gusmano R, Massella L, Banfi G, Scolari F, Sessa A, Rizzoni G, Tryggvason K, Pignatti PF, Savi M, Ballabio A, De Marchi M (1996) X-linked Alport syndrome: an SSCP-based mutation survey over all 51 exons of the COL4A5 gene. Am J Hum Genet 58:1192–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Plant KE, Green PM, Vetrie D, Flinter FA (1999) Detection of mutations in COL4A5 in patients with Alport syndrome. Hum Mutat 13:124–132

    CAS  PubMed  Google Scholar 

  118. Gross O, Kashtan CE, Rheault MN, Flinter F, Savige J, Miner JH, Torra R, Ars E, Deltas C, Savva I, Perin L, Renieri A, Ariani F, Mari F, Baigent C, Judge P, Knebelman B, Heidet L, Lagas S, Blatt D, Ding J, Zhang Y, Gale DP, Prunotto M, Xue Y, Schachter AD, Morton LCG, Blem J, Huang M, Liu S, Vallee S, Renault D, Schifter J, Skelding J, Gear S, Friede T, Turner AN, Lennon R (2017) Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrol Dial Transplant 32:916–924

    CAS  PubMed  Google Scholar 

  119. Mao Z, Chong J, Ong AC (2016) Autosomal dominant polycystic kidney disease: recent advances in clinical management. F1000Res 5:2029

    PubMed  PubMed Central  Google Scholar 

  120. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Dandurand A, Ouyang J, Czerwiec FS, Blais JD, TEMPO 4:4 Trial Investigators (2017) Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant 32:1262

    PubMed  Google Scholar 

  121. Wu G, Somlo S (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69:1–15

    CAS  PubMed  Google Scholar 

  122. Kinoshita M, Higashihara E, Kawano H, Higashiyama R, Koga D, Fukui T, Gondo N, Oka T, Kawahara K, Rigo K, Hague T, Katsuragi K, Sudo K, Takeshi M, Horie S, Nutahara K (2016) Technical Evaluation: identification of pathogenic mutations in PKD1 and PKD2 in patients with autosomal dominant polycystic kidney disease by next-generation sequencing and use of a comprehensive new classification system. PLoS One 11:e0166288

    PubMed  PubMed Central  Google Scholar 

  123. Cornec-Le Gall E, Audrezet MP, Renaudineau E, Hourmant M, Charasse C, Michez E, Frouget T, Vigneau C, Dantal J, Siohan P, Longuet H, Gatault P, Ecotiere L, Bridoux F, Mandart L, Hanrotel-Saliou C, Stanescu C, Depraetre P, Gie S, Massad M, Kersale A, Seret G, Augusto JF, Saliou P, Maestri S, Chen JM, Harris PC, Ferec C, Le Meur Y (2017) PKD2-related autosomal dominant polycystic kidney disease: prevalence, clinical presentation, mutation spectrum, and prognosis. Am J Kidney Dis 70:476–485

    CAS  PubMed  Google Scholar 

  124. Peral B, San Millan JL, Ong AC, Gamble V, Ward CJ, Strong C, Harris PC (1996) Screening the 3' region of the polycystic kidney disease 1 (PKD1) gene reveals six novel mutations. Am J Hum Genet 58:86–96

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Trujillano D, Bullich G, Ossowski S, Ballarin J, Torra R, Estivill X, Ars E (2014) Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing. Mol Genet Genomic Med 2:412–421

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L, Fossdal R, Coto E, Wu G, Breuning MH, Germino GG, Peters DJ, Somlo S (1999) Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol 10:2342–2351

    CAS  PubMed  Google Scholar 

  127. Aguiari G, Banzi M, Gessi S, Cai Y, Zeggio E, Manzati E, Piva R, Lambertini E, Ferrari L, Peters DJ, Lanza F, Harris PC, Borea PA, Somlo S, Del Senno L (2004) Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J 18:884–886

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by research grants from the Kidney Foundation of Canada (grant number) and the Genome Canada/Genome Quebec program (GAPP) in partnership with Eloxx pharmaceuticals, Inc. and the Cystinosis Research Foundation. Dr. Goodyer is the recipient of a James McGill Research Chair. Emma Brasell was the recipient of a fellowship from the Cystinosis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Goodyer.

Ethics declarations

Conflict of interest

Eloxx Pharmaceuticals, Inc. holds patents on new aminoglycosides with readthrough properties.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokhmafshan, F., Dickinson, K., Akpa, M.M. et al. A no-nonsense approach to hereditary kidney disease. Pediatr Nephrol 35, 2031–2042 (2020). https://doi.org/10.1007/s00467-019-04394-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04394-5

Keywords

Navigation