Skip to main content

Molecular Diagnosis of Genetic Diseases of the Kidney: Primer for Pediatric Nephrologists

  • Chapter
  • First Online:
Pediatric Kidney Disease
  • 1103 Accesses

Abstract

In an age of competing medical priorities, why should healthcare professionals who are already overloaded with information develop core competencies in genetics and genomics? [1]

The genomic architecture of kidney disease has fascinated developmental biologists and human geneticists for over four decades. Seminal discoveries of note include the discovery of genes implicated in autosomal dominant/recessive polycystic kidney disease, nephronophthisis, and nephrotic syndrome. Uncovering disease-causing genes has helped refine our pathogenetic understanding of many renal diseases, and in many cases, it has directly translated into a concrete improvement of patient care. The recent emergence of next-generation sequencing strategies has dramatically sped up the discovery process and constitutes the cornerstone towards the realization of personalized medicine. This chapter summarizes basic genomic/genetic concepts before delving into recent advances that are pertinent to the practice of contemporary pediatric nephrologists. From laboratory methods to the interpretation of genetic variants, we present every topic within a clinical framework enriched with many examples from the pediatric nephrology literature. The major benefits of genomics to the day-to-day practice of busy clinicians are: it will expedite diagnosis, clarify prognosis, and guide therapeutic choices. Our overarching goals for this chapter were two-fold: to first convince clinicians “already overloaded with information” that learning about genomics is a worthwhile investment that will pay dividends in the short-term, while providing an accessible port of entry into this complex field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guttmacher AE, Porteous ME, McInerney JD. Educating health-care professionals about genetics and genomics. Nat Rev Genet. 2007;8:151–7. https://doi.org/10.1038/nrg2007.

    Article  CAS  PubMed  Google Scholar 

  2. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8. https://doi.org/10.1038/171737a0.

    Article  CAS  PubMed  Google Scholar 

  3. Wei L-H, Guo JU. Coding functions of “noncoding” RNAs. Science. 2020:1074–5. https://doi.org/10.1126/science.aba6117.

  4. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. https://doi.org/10.1038/s41580-020-00315-9.

    Article  CAS  PubMed  Google Scholar 

  5. Hood L, Rowen L. The Human Genome Project: big science transforms biology and medicine. Genome Med. 2013;5:79. https://doi.org/10.1186/gm483.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. https://doi.org/10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  7. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45. https://doi.org/10.1038/nature03001.

    Article  CAS  Google Scholar 

  8. Eisenstein M. Closing in on a complete human genome. Nature. 2021;590:679–81. https://doi.org/10.1038/d41586-021-00462-9.

    Article  CAS  PubMed  Google Scholar 

  9. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–8. https://doi.org/10.1073/pnas.1318948111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gregorich ZR, Ge Y. Top-down proteomics in health and disease: challenges and opportunities. Proteomics. 2014;14:1195–210. https://doi.org/10.1002/pmic.201300432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliverio AL, Bellomo T, Mariani LH. Evolving clinical applications of tissue transcriptomics in kidney disease. Front Pediatr. 2019;7:306. https://doi.org/10.3389/fped.2019.00306.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55. https://doi.org/10.1007/978-981-15-3449-2_1.

    Article  CAS  PubMed  Google Scholar 

  13. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99:1819–75. https://doi.org/10.1152/physrev.00035.2018.

    Article  CAS  PubMed  Google Scholar 

  14. Peer E, Rechavi G, Dominissini D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr Opin Chem Biol. 2017;41:93–8. https://doi.org/10.1016/j.cbpa.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  15. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron M-C, Tan W, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 2017;49:1529–38. https://doi.org/10.1038/ng.3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balogh E, Chandler JC, Varga M, Tahoun M, Menyhárd DK, Schay G, et al. Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A. 2020;117:15137–47. https://doi.org/10.1073/pnas.2002328117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14:479–92. https://doi.org/10.1038/s41581-018-0021-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu H, Humphreys BD. The promise of single-cell RNA sequencing for kidney disease investigation. Kidney Int. 2017;92:1334–42. https://doi.org/10.1016/j.kint.2017.06.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310. https://doi.org/10.1038/nrg.2018.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 2010;705:96–106. https://doi.org/10.1016/j.mrrev.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  21. Tan AY, Zhang T, Michaeel A, Blumenfeld J, Liu G, Zhang W, et al. Somatic mutations in renal cyst epithelium in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2018;29:2139–56. https://doi.org/10.1681/ASN.2017080878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76. https://doi.org/10.1038/nature13127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gale DP, Mallett A, Patel C, Sneddon TP, Rehm HL, Sampson MG, et al. Diagnoses of uncertain significance: kidney genetics in the 21st century. Nat Rev Nephrol. 2020;16:616–8. https://doi.org/10.1038/s41581-020-0277-6.

    Article  PubMed  Google Scholar 

  24. Ko Y-A, Susztak K. Epigenomics: the science of no-longer-junk DNA. Why study it in chronic kidney disease? Semin Nephrol. 2013;33:354–62. https://doi.org/10.1016/j.semnephrol.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  25. Mele C, Lemaire M, Iatropoulos P, Piras R, Bresin E, Bettoni S, et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2015;10:1011–9. https://doi.org/10.2215/CJN.08520814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. Exposing synonymous mutations. Trends Genet. 2014;30:308–21. https://doi.org/10.1016/j.tig.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  27. Camps M, Herman A, Loh E, Loeb LA. Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol. 2007;42:313–26. https://doi.org/10.1080/10409230701597642.

    Article  CAS  PubMed  Google Scholar 

  28. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52. https://doi.org/10.1126/science.3291115.

    Article  CAS  PubMed  Google Scholar 

  29. Gloss BS, Dinger ME. Realizing the significance of noncoding functionality in clinical genomics. Exp Mol Med. 2018;50:1–8. https://doi.org/10.1038/s12276-018-0087-0.

    Article  CAS  PubMed  Google Scholar 

  30. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998;8:769–76. https://doi.org/10.1101/gr.8.8.769.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura Y. DNA variations in human and medical genetics: 25 years of my experience. J Hum Genet. 2009;54:1–8. https://doi.org/10.1038/jhg.2008.6.

    Article  CAS  PubMed  Google Scholar 

  32. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61. https://doi.org/10.1038/nature06258.

    Article  CAS  Google Scholar 

  33. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475:163–5. https://doi.org/10.1038/475163a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neale BM. Introduction to linkage disequilibrium, the HapMap, and imputation. Cold Spring Harb Protoc. 2010;2010:db.top74. https://doi.org/10.1101/pdb.top74.

    Article  Google Scholar 

  35. Stram DO. Tag SNP selection for association studies. Genet Epidemiol. 2004;27:365–74. https://doi.org/10.1002/gepi.20028.

    Article  PubMed  Google Scholar 

  36. Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet. 2015;8:37. https://doi.org/10.1186/s12920-015-0115-z.

    Article  CAS  Google Scholar 

  37. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11. https://doi.org/10.1093/nar/29.1.308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang Y, Epstein MP, Conneely KN. Assessing the impact of population stratification on association studies of rare variation. Hum Hered. 2013;76:28–35. https://doi.org/10.1159/000353270.

    Article  PubMed  Google Scholar 

  39. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177:26–31. https://doi.org/10.1016/j.cell.2019.02.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shraga R, Yarnall S, Elango S, Manoharan A, Rodriguez SA, Bristow SL, et al. Evaluating genetic ancestry and self-reported ethnicity in the context of carrier screening. BMC Genet. 2017;18:99. https://doi.org/10.1186/s12863-017-0570-y.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alves I, Srámková Hanulová A, Foll M, Excoffier L. Genomic data reveal a complex making of humans. PLoS Genet. 2012;8:e1002837. https://doi.org/10.1371/journal.pgen.1002837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics. 2015;9:1. https://doi.org/10.1186/s40246-014-0023-x.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat Genet. 2008:491–2. https://doi.org/10.1038/ng0508-491.

  44. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470:59–65. https://doi.org/10.1038/nature09708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Church DM, Lappalainen I, Sneddon TP, Hinton J, Maguire M, Lopez J, et al. Public data archives for genomic structural variation. Nat Genet. 2010;42:813–4. https://doi.org/10.1038/ng1010-813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet. 2017;58:449–57. https://doi.org/10.1007/s13353-017-0407-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roth JR. Frameshift mutations. Annu Rev Genet. 1974;8:319–46. https://doi.org/10.1146/annurev.ge.08.120174.001535.

    Article  CAS  PubMed  Google Scholar 

  48. Kirby A, Gnirke A, Jaffe DB, Barešová V, Pochet N, Blumenstiel B, et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013;45:299–303. https://doi.org/10.1038/ng.2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tubio JMC, Estivill X. Cancer: when catastrophe strikes a cell. Nature. 2011;470:476–7. https://doi.org/10.1038/470476a.

    Article  CAS  PubMed  Google Scholar 

  50. Christodoulou K, Tsingis M, Stavrou C, Eleftheriou A, Papapavlou P, Patsalis PC, et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease (ADMCKD). Hum Mol Genet. 1998;7:905–11.

    Article  CAS  PubMed  Google Scholar 

  51. Antignac C, Knebelmann B, Drouot L, Gros F, Deschênes G, Hors-Cayla MC, et al. Deletions in the COL4A5 collagen gene in X-linked Alport syndrome. Characterization of the pathological transcripts in nonrenal cells and correlation with disease expression. J Clin Invest. 1994;93:1195–207. https://doi.org/10.1172/JCI117073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gale DP, de Jorge EG, Cook HT, Martinez-Barricarte R, Hadjisavvas A, McLean AG, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet. 2010;376:794–801. https://doi.org/10.1016/S0140-6736(10)60670-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barnes MR, Breen G. A short primer on the functional analysis of copy number variation for biomedical scientists. Methods Mol Biol. 2010;628:119–35. https://doi.org/10.1007/978-1-60327-367-1_7.

    Article  CAS  PubMed  Google Scholar 

  54. Pook MA, Wrong O, Wooding C, Norden AGW, Feest TG, Thakker RV. Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS25 and maps to Xp11.22. Hum Mol Genet. 1993;2:2129–34.

    Article  CAS  PubMed  Google Scholar 

  55. Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science. 1990;248:1224–7. https://doi.org/10.1126/science.2349482.

    Article  CAS  PubMed  Google Scholar 

  56. Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997;17:149–53. https://doi.org/10.1038/ng1097-149.

    Article  CAS  PubMed  Google Scholar 

  57. Lippe B, Geffner ME, Dietrich RB, Boechat MI, Kangarloo H. Renal malformations in patients with Turner syndrome: imaging in 141 patients. Pediatrics. 1988;82:852–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/3054787.

    Article  CAS  PubMed  Google Scholar 

  58. Málaga S, Pardo R, Málaga I, Orejas G, Fernández-Toral J. Renal involvement in Down syndrome. Pediatr Nephrol. 2005;20:614–7. https://doi.org/10.1007/s00467-005-1825-9.

    Article  PubMed  Google Scholar 

  59. Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1–8. https://doi.org/10.1093/hmg/ddp011.

    Article  CAS  PubMed  Google Scholar 

  60. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. 2006;439:851–5. https://doi.org/10.1038/nature04489.

    Article  CAS  PubMed  Google Scholar 

  61. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91:987–97. https://doi.org/10.1016/j.ajhg.2012.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Girgis AH, Iakovlev VV, Beheshti B, Bayani J, Squire JA, Bui A, et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 2012;72:5273–84. https://doi.org/10.1158/0008-5472.CAN-12-0656.

    Article  CAS  PubMed  Google Scholar 

  63. Riethoven J-JM. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol. 2010;674:33–42. https://doi.org/10.1007/978-1-60761-854-6_3.

    Article  CAS  PubMed  Google Scholar 

  64. Vervoort VS, Smith RJH, O’Brien J, Schroer R, Abbott A, Stevenson RE, et al. Genomic rearrangements of EYA1 account for a large fraction of families with BOR syndrome. Eur J Hum Genet. 2002;10:757–66. https://doi.org/10.1038/sj.ejhg.5200877.

    Article  CAS  PubMed  Google Scholar 

  65. Hertz JM, Persson U, Juncker I, Segelmark M. Alport syndrome caused by inversion of a 21 Mb fragment of the long arm of the X-chromosome comprising exon 9 through 51 of the COL4A5 gene. Hum Genet. 2005;118:23–8. https://doi.org/10.1007/s00439-005-0013-0.

    Article  CAS  PubMed  Google Scholar 

  66. Reilly DS, Lewis RA, Ledbetter DH, Nussbaum RL. Oculocerebrorenal syndrome, with application to carrier assessment. Am J Hum Genet. 1988;42:748–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, Landa I, Leandro-García LJ, Letón R, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet. 2011;43:663–7. https://doi.org/10.1038/ng.861.

    Article  CAS  PubMed  Google Scholar 

  68. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40. https://doi.org/10.1016/j.cell.2010.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12:663–70. https://doi.org/10.1038/nrc3352.

    Article  CAS  PubMed  Google Scholar 

  70. Maher CA, Wilson RK. Chromothripsis and human disease: piecing together the shattering process. Cell. 2012;148:29–32. https://doi.org/10.1016/j.cell.2012.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611–623.e17. https://doi.org/10.1016/j.cell.2018.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SCM, et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet. 2011;20:1916–24. https://doi.org/10.1093/hmg/ddr073.

    Article  CAS  PubMed  Google Scholar 

  73. Chiang C, Jacobsen JC, Ernst C, Hanscom C, Heilbut A, Blumenthal I, et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet. 2012;44(390–7):S1. https://doi.org/10.1038/ng.2202.

    Article  CAS  PubMed  Google Scholar 

  74. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 2012;1:648–55. https://doi.org/10.1016/j.celrep.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  75. de Pagter MS, van Roosmalen MJ, Baas AF, Renkens I, Duran KJ, van Binsbergen E, et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet. 2015;96:651–6. https://doi.org/10.1016/j.ajhg.2015.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bertelsen B, Nazaryan-Petersen L, Sun W, Mehrjouy MM, Xie G, Chen W, et al. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med. 2016;18:494–500. https://doi.org/10.1038/gim.2015.112.

    Article  PubMed  Google Scholar 

  77. Veitia RA, Birchler JA. Dominance and gene dosage balance in health and disease: why levels matter! J Pathol. 2010;220:174–85. https://doi.org/10.1002/path.2623.

    Article  CAS  PubMed  Google Scholar 

  78. Johnson AF, Nguyen HT, Veitia RA. Causes and effects of haploinsufficiency. Biol Rev Camb Philos Soc. 2019;94:1774–85. https://doi.org/10.1111/brv.12527.

    Article  PubMed  Google Scholar 

  79. Morrill SA, Amon A. Why haploinsufficiency persists. Proc Natl Acad Sci U S A. 2019;116:11866–71. https://doi.org/10.1073/pnas.1900437116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol. 2015;11:102–12. https://doi.org/10.1038/nrneph.2014.232.

    Article  CAS  PubMed  Google Scholar 

  81. Bockenhauer D, Jaureguiberry G. HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol. 2016;31:707–14. https://doi.org/10.1007/s00467-015-3142-2.

    Article  PubMed  Google Scholar 

  82. Clissold RL, Ashfield B, Burrage J, Hannon E, Bingham C, Mill J, et al. Genome-wide methylomic analysis in individuals with HNF1B intragenic mutation and 17q12 microdeletion. Clin Epigenetics. 2018;10:97. https://doi.org/10.1186/s13148-018-0530-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim J-H, Park EY, Chitayat D, Stachura DL, Schaper J, Lindstrom K, et al. SON haploinsufficiency causes impaired pre-mRNA splicing of CAKUT genes and heterogeneous renal phenotypes. Kidney Int. 2019;95:1494–504. https://doi.org/10.1016/j.kint.2019.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopez-Rivera E, Liu YP, Verbitsky M, Anderson BR, Capone VP, Otto EA, et al. Genetic drivers of kidney defects in the DiGeorge syndrome. N Engl J Med. 2017;376:742–54. https://doi.org/10.1056/NEJMoa1609009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Le Tanno P, Breton J, Bidart M, Satre V, Harbuz R, Ray PF, et al. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. J Med Genet. 2017;54:502–10. https://doi.org/10.1136/jmedgenet-2016-104435.

    Article  CAS  PubMed  Google Scholar 

  86. Yang N, Wu N, Dong S, Zhang L, Zhao Y, Chen W, et al. Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney Int. 2020;98:1020–30. https://doi.org/10.1016/j.kint.2020.04.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cordido A, Besada-Cerecedo L, García-González MA. The genetic and cellular basis of autosomal dominant polycystic kidney disease-a primer for clinicians. Front Pediatr. 2017;5:279. https://doi.org/10.3389/fped.2017.00279.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Henske EP, Jóźwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035. https://doi.org/10.1038/nrdp.2016.35.

    Article  PubMed  Google Scholar 

  89. Veys KR, Elmonem MA, Arcolino FO, van den Heuvel L, Levtchenko E. Nephropathic cystinosis: an update. Curr Opin Pediatr. 2017;29:168–78. https://doi.org/10.1097/MOP.0000000000000462.

    Article  PubMed  Google Scholar 

  90. Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2017;5:221. https://doi.org/10.3389/fped.2017.00221.

    Article  PubMed  Google Scholar 

  91. Besouw MTP, Kleta R, Bockenhauer D. Bartter and Gitelman syndromes: questions of class. Pediatr Nephrol. 2020;35:1815–24. https://doi.org/10.1007/s00467-019-04371-y.

    Article  PubMed  Google Scholar 

  92. Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol. 2010;21:1842–5. https://doi.org/10.1681/ASN.2010050457.

    Article  CAS  PubMed  Google Scholar 

  93. Bockenhauer D, Bichet DG. Nephrogenic diabetes insipidus. Curr Opin Pediatr. 2017;29:199–205. https://doi.org/10.1097/MOP.0000000000000473.

    Article  CAS  PubMed  Google Scholar 

  94. Ehlayel AM, Copelovitch L. Update on dent disease. Pediatr Clin N Am. 2019;66:169–78. https://doi.org/10.1016/j.pcl.2018.09.003.

    Article  Google Scholar 

  95. Zhang X, Zhang Y, Zhang Y, Gu H, Chen Z, Ren L, et al. X-linked Alport syndrome: pathogenic variant features and further auditory genotype-phenotype correlations in males. Orphanet J Rare Dis. 2018;13:229. https://doi.org/10.1186/s13023-018-0974-4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019;15:435–55. https://doi.org/10.1038/s41581-019-0152-5.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. Mitochondrial DNA mutations in renal disease: an overview. Pediatr Nephrol. 2021;36:9–17. https://doi.org/10.1007/s00467-019-04404-6.

    Article  PubMed  Google Scholar 

  98. Ragoussis J. Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet. 2009;10:117–33. https://doi.org/10.1146/annurev-genom-082908-150116.

    Article  CAS  PubMed  Google Scholar 

  99. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581–90. https://doi.org/10.1038/s41576-018-0018-x.

    Article  CAS  PubMed  Google Scholar 

  100. Liu L, Kiryluk K. Genome-wide polygenic risk predictors for kidney disease. Nat Rev Nephrol. 2018:723–4. https://doi.org/10.1038/s41581-018-0067-6.

  101. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48. https://doi.org/10.1126/science.8091226.

    Article  CAS  PubMed  Google Scholar 

  102. Ott J, Wang J, Leal SM. Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet. 2015;16:275–84. https://doi.org/10.1038/nrg3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hamamy H, Antonarakis SE, Cavalli-Sforza LL, Temtamy S, Romeo G, Kate LPT, et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet Med. 2011;13:841–7. https://doi.org/10.1097/GIM.0b013e318217477f.

    Article  PubMed  Google Scholar 

  104. Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70. https://doi.org/10.1126/science.2884728.

    Article  CAS  PubMed  Google Scholar 

  105. Alkuraya FS. Discovery of rare homozygous mutations from studies of consanguineous pedigrees. Curr Protoc Hum Genet. 2012;Chapter 6:Unit6.12. https://doi.org/10.1002/0471142905.hg0612s75.

  106. Alkuraya FS. Autozygome decoded. Genet Med. 2010;12:765–71. https://doi.org/10.1097/GIM.0b013e3181fbfcc4.

    Article  PubMed  Google Scholar 

  107. Miano MG, Jacobson SG, Carothers A, Hanson I, Teague P, Lovell J, et al. Pitfalls in homozygosity mapping. Am J Hum Genet. 2000;67:1348–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002929707629668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bolk S, Puffenberger EG, Hudson J, Morton DH, Chakravarti A. Elevated frequency and allelic heterogeneity of congenital nephrotic syndrome, Finnish type, in the old order Mennonites. Am J Hum Genet. 1999;65:1785–90. https://doi.org/10.1086/302687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frishberg Y, Ben-Neriah Z, Suvanto M, Rinat C, Männikkö M, Feinstein S, et al. Misleading findings of homozygosity mapping resulting from three novel mutations in NPHS1 encoding nephrin in a highly inbred community. Genet Med. 2007;9:180–4. https://doi.org/10.1097/gim.0b013e318031c7de.

    Article  CAS  PubMed  Google Scholar 

  110. Hildebrandt F, Heeringa SF, Rüschendorf F, Attanasio M, Nürnberg G, Becker C, et al. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 2009;5:e1000353. https://doi.org/10.1371/journal.pgen.1000353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alkuraya FS. Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet Med. 2010;12:236–9. https://doi.org/10.1097/GIM.0b013e3181ceb95d.

    Article  PubMed  Google Scholar 

  112. Abu Safieh L, Aldahmesh MA, Shamseldin H, Hashem M, Shaheen R, Alkuraya H, et al. Clinical and molecular characterisation of Bardet-Biedl syndrome in consanguineous populations: the power of homozygosity mapping. J Med Genet. 2010;47:236–41. https://doi.org/10.1136/jmg.2009.070755.

    Article  CAS  PubMed  Google Scholar 

  113. Köttgen A. Genome-wide association studies in nephrology research. Am J Kidney Dis. 2010;56:743–58. https://doi.org/10.1053/j.ajkd.2010.05.018.

    Article  CAS  PubMed  Google Scholar 

  114. Borecki IB, Province MA. Linkage and association: basic concepts. Adv Genet. 2008;60:51–74. https://doi.org/10.1016/S0065-2660(07)00403-8.

    Article  PubMed  Google Scholar 

  115. Pan Q. Multiple hypotheses testing procedures in clinical trials and genomic studies. Front Public Health. 2013;1:63. https://doi.org/10.3389/fpubh.2013.00063.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24. https://doi.org/10.1016/j.ajhg.2011.11.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kao WHL, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet. 2008;40:1185–92. https://doi.org/10.1038/ng.232.

    Article  CAS  PubMed  Google Scholar 

  118. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40:1175–84. https://doi.org/10.1038/ng.226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E, et al. MYH9-related disease: may-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine. 2003;82:203–15. https://doi.org/10.1097/01.md.0000076006.64510.5c.

    Article  PubMed  Google Scholar 

  120. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329:841–5. https://doi.org/10.1126/science.1193032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parsa A, Kao WHL, Xie D, Astor BC, Li M, Hsu C-Y, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369:2183–96. https://doi.org/10.1056/NEJMoa1310345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Friedman DJ, Pollak MR. APOL1 and kidney disease: from genetics to biology. Annu Rev Physiol. 2020;82:323–42. https://doi.org/10.1146/annurev-physiol-021119-034345.

    Article  CAS  PubMed  Google Scholar 

  123. Bruggeman LA, O’Toole JF, Sedor JR. APOL1 polymorphisms and kidney disease: loss-of-function or gain-of-function? Am J Physiol Renal Physiol. 2019;316:F1–8. https://doi.org/10.1152/ajprenal.00426.2018.

    Article  CAS  PubMed  Google Scholar 

  124. Min Jou W, Haegeman G, Ysebaert M, Fiers W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature. 1972;237:82–8. https://doi.org/10.1038/237082a0.

    Article  CAS  PubMed  Google Scholar 

  125. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Biotechnology. 1992;24:104–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1422003.

    CAS  PubMed  Google Scholar 

  126. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–9. https://doi.org/10.1038/321674a0.

    Article  CAS  PubMed  Google Scholar 

  127. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46. https://doi.org/10.1038/nrg2626.

    Article  CAS  PubMed  Google Scholar 

  128. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9. https://doi.org/10.1038/nbt.2198.

    Article  CAS  PubMed  Google Scholar 

  129. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73. https://doi.org/10.1038/nature09534.

    Article  CAS  PubMed  Google Scholar 

  130. Buchanan CC, Torstenson ES, Bush WS, Ritchie MD. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data. J Am Med Inform Assoc. 2012;19:289–94. https://doi.org/10.1136/amiajnl-2011-000652.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, et al. Genetic variation in an individual human exome. PLoS Genet. 2008;4:e1000160. https://doi.org/10.1371/journal.pgen.1000160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101. https://doi.org/10.1073/pnas.0910672106.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7. https://doi.org/10.1038/ng.2007.42.

    Article  CAS  PubMed  Google Scholar 

  134. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6. https://doi.org/10.1038/nature08250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3. https://doi.org/10.1038/ng.646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5:e254. https://doi.org/10.1371/journal.pbio.0050254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bick D, Dimmock D. Whole exome and whole genome sequencing. Curr Opin Pediatr. 2011;23:594–600. https://doi.org/10.1097/MOP.0b013e32834b20ec.

    Article  PubMed  Google Scholar 

  138. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55. https://doi.org/10.1146/annurev-med-100708-204735.

    Article  CAS  PubMed  Google Scholar 

  139. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6:S13–20. https://doi.org/10.1038/nmeth.1374.

    Article  CAS  PubMed  Google Scholar 

  140. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6. https://doi.org/10.1126/science.1149504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–6. https://doi.org/10.1038/nature06884.

    Article  CAS  PubMed  Google Scholar 

  142. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125. https://doi.org/10.1186/gb-2011-12-8-125.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sabbagh R, Van den Veyver IB. The current and future impact of genome-wide sequencing on fetal precision medicine. Hum Genet. 2020;139:1121–30. https://doi.org/10.1007/s00439-019-02088-4.

    Article  PubMed  Google Scholar 

  144. Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med. 2019;380:142–51. https://doi.org/10.1056/NEJMoa1806891.

    Article  CAS  PubMed  Google Scholar 

  145. Sun Y, Ruivenkamp CAL, Hoffer MJV, Vrijenhoek T, Kriek M, van Asperen CJ, et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum Mutat. 2015;36:648–55. https://doi.org/10.1002/humu.22783.

    Article  CAS  PubMed  Google Scholar 

  146. Connaughton DM, Hildebrandt F. Personalized medicine in chronic kidney disease by detection of monogenic mutations. Nephrol Dial Transplant. 2020;35:390–7. https://doi.org/10.1093/ndt/gfz028.

    Article  CAS  PubMed  Google Scholar 

  147. Brunelli L, Jenkins SM, Gudgeon JM, Bleyl SB, Miller CE, Tvrdik T, et al. Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol Genet Genomic Med. 2019;7:e00796. https://doi.org/10.1002/mgg3.796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2017; https://doi.org/10.1038/gim.2017.119.

  149. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jacob HJ, Abrams K, Bick DP, Brodie K, Dimmock DP, Farrell M, et al. Genomics in clinical practice: lessons from the front lines. Sci Transl Med. 2013;5:194cm5. https://doi.org/10.1126/scitranslmed.3006468.

    Article  PubMed  Google Scholar 

  151. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11. https://doi.org/10.1056/NEJMoa1306555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mersch J, Brown N, Pirzadeh-Miller S, Mundt E, Cox HC, Brown K, et al. Prevalence of variant reclassification following hereditary cancer genetic testing. JAMA. 2018;320:1266–74. https://doi.org/10.1001/jama.2018.13152.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3:65ra4. https://doi.org/10.1126/scitranslmed.3001756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen—the clinical genome resource. N Engl J Med. 2015;372:2235–42. https://doi.org/10.1056/NEJMsr1406261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Patel RY, Shah N, Jackson AR, Ghosh R, Pawliczek P, Paithankar S, et al. ClinGen pathogenicity calculator: a configurable system for assessing pathogenicity of genetic variants. Genome Med. 2017;9:3. https://doi.org/10.1186/s13073-016-0391-z.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Krabbenborg L, Vissers LELM, Schieving J, Kleefstra T, Kamsteeg EJ, Veltman JA, et al. Understanding the psychosocial effects of WES test results on parents of children with rare diseases. J Genet Couns. 2016;25:1207–14. https://doi.org/10.1007/s10897-016-9958-5.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, et al. The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136:665–77. https://doi.org/10.1007/s00439-017-1779-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Landrum MJ, Kattman BL. ClinVar at five years: delivering on the promise. Hum Mutat. 2018;39:1623–30. https://doi.org/10.1002/humu.23641.

    Article  PubMed  Google Scholar 

  159. Koch L. Exploring human genomic diversity with gnomAD. Nat Rev Genet. 2020:448. https://doi.org/10.1038/s41576-020-0255-7.

  160. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20. https://doi.org/10.1002/0471142905.hg0720s76.

  161. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81. https://doi.org/10.1038/nprot.2009.86.

    Article  CAS  PubMed  Google Scholar 

  162. González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet. 2011;88:440–9. https://doi.org/10.1016/j.ajhg.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:e118 [cited 2021 Apr 15]. Available from: https://academic.oup.com/nar/article-pdf/39/17/e118/16776369/gkr407.pdf.

    Article  PubMed  Google Scholar 

  164. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–94 [cited 2021 Apr 15]. Available from: https://academic-oup-com.myaccess.library.utoronto.ca/nar/article-pdf/47/D1/D886/27436395/gky1016.pdf.

    Article  CAS  PubMed  Google Scholar 

  165. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99:877–85. https://doi.org/10.1016/j.ajhg.2016.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA. Centrosomes and cilia in human disease. Trends Genet. 2011;27:307–15. https://doi.org/10.1016/j.tig.2011.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33:508–30. https://doi.org/10.1016/j.semnephrol.2013.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Joshi S, Andersen R, Jespersen B, Rittig S. Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing. Acta Paediatr. 2013;102:844–56. https://doi.org/10.1111/apa.12317.

    Article  CAS  PubMed  Google Scholar 

  169. Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;27:3691–704. Available from: https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfs442.

    Article  CAS  PubMed  Google Scholar 

  170. Devuyst O, Thakker RV. Dent’s disease. Orphanet J Rare Dis. 2010;5:28. https://doi.org/10.1186/1750-1172-5-28.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8:467–75. https://doi.org/10.1038/nrneph.2012.113.

    Article  CAS  PubMed  Google Scholar 

  172. Gee HY, Otto EA, Hurd TW, Ashraf S, Chaki M, Cluckey A, et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 2014;85:880–7. https://doi.org/10.1038/ki.2013.450.

    Article  CAS  PubMed  Google Scholar 

  173. Gallagher PG. Disorders of red cell volume regulation. Curr Opin Hematol. 2013;20:201–7. https://doi.org/10.1097/MOH.0b013e32835f6870.

    Article  CAS  PubMed  Google Scholar 

  174. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–48. https://doi.org/10.1016/j.cell.2012.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hurd TW, Otto EA, Mishima E, Gee HY, Inoue H, Inazu M, et al. Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol. 2013;24:967–77. https://doi.org/10.1681/ASN.2012101034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zaitlen N, Kraft P. Heritability in the genome-wide association era. Hum Genet. 2012;131:1655–64. https://doi.org/10.1007/s00439-012-1199-6.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12:17–25. https://doi.org/10.1007/s11906-009-0086-6.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9. https://doi.org/10.1016/j.gde.2009.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50. https://doi.org/10.1038/nrg2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hirschhorn JN. Genomewide association studies—illuminating biologic pathways. N Engl J Med. 2009:1699–701. https://doi.org/10.1056/NEJMp0808934.

  181. Gupta J, Kanetsky PA, Wuttke M, Köttgen A, Schaefer F, Wong CS. Genome-wide association studies in pediatric chronic kidney disease. Pediatr Nephrol. 2016;31:1241–52 [cited 2021 Apr 16]. https://doi.org/10.1007/s00467-015-3235-y.

    Article  PubMed  Google Scholar 

  182. Arnold D, Jones BL. Personalized medicine: a pediatric perspective. Curr Allergy Asthma Rep. 2009;9:426–32. Available from: http://link.springer.com/10.1007/s11882-009-0063-9.

    Article  PubMed  Google Scholar 

  183. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67. https://doi.org/10.1056/NEJMra035092.

    Article  CAS  PubMed  Google Scholar 

  184. Leeder JS. Translating pharmacogenetics and pharmacogenomics into drug development for clinical pediatrics and beyond. Drug Discov Today. 2004;9:567–73. https://doi.org/10.1016/S1359-6446(04)03129-0.

    Article  CAS  PubMed  Google Scholar 

  185. Wuttke M, Wong CS, Wühl E, Epting D, Luo L, Hoppmann A, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric Investigation for Genetic Factors Linked with Renal Progression Consortium. Nephrol Dial Transplant. 2016;31:262–9. https://doi.org/10.1093/ndt/gfv342.

    Article  CAS  PubMed  Google Scholar 

  186. Debiec H, Dossier C, Letouzé E, Gillies CE, Vivarelli M, Putler RK, et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2018;29:2000–13. https://doi.org/10.1681/ASN.2017111185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dufek S, Cheshire C, Levine AP, Trompeter RS, Issler N, Stubbs M, et al. Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2019;30:1375–84. https://doi.org/10.1681/ASN.2018101054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gbadegesin RA, Adeyemo A, Webb NJA, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol. 2015;26:1701–10. https://doi.org/10.1681/ASN.2014030247.

    Article  CAS  PubMed  Google Scholar 

  189. Jia X, Horinouchi T, Hitomi Y, Shono A, Khor S-S, Omae Y, et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J Am Soc Nephrol. 2018;29:2189–99. https://doi.org/10.1681/ASN.2017080859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, et al. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int. 2020;98:1308–22. https://doi.org/10.1016/j.kint.2020.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360:1696–8. https://doi.org/10.1056/NEJMp0806284.

    Article  CAS  PubMed  Google Scholar 

  192. Kryukov GV, Shpunt A, Stamatoyannopoulos JA, Sunyaev SR. Power of deep, all-exon resequencing for discovery of human trait genes. Proc Natl Acad Sci U S A. 2009;106:3871–6. https://doi.org/10.1073/pnas.0812824106.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9. https://doi.org/10.1126/science.1219240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Panoutsopoulou K, Tachmazidou I, Zeggini E. In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet. 2013;22:R16–21. https://doi.org/10.1093/hmg/ddt376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182:845–50. https://doi.org/10.1534/genetics.109.102798.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hemani G, Knott S, Haley C. An evolutionary perspective on epistasis and the missing heritability. PLoS Genet. 2013;9:e1003295. https://doi.org/10.1371/journal.pgen.1003295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kaprio J. Twins and the mystery of missing heritability: the contribution of gene-environment interactions. J Intern Med. 2012;272:440–8. https://doi.org/10.1111/j.1365-2796.2012.02587.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–8. https://doi.org/10.1073/pnas.1119675109.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Janssens ACJW, van Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet. 2008;17:R166–73. https://doi.org/10.1093/hmg/ddn250.

    Article  CAS  PubMed  Google Scholar 

  200. Elens L, Bouamar R, Shuker N, Hesselink DA, van Gelder T, van Schaik RHN. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. Br J Clin Pharmacol. 2014;77:715–28. https://doi.org/10.1111/bcp.12253.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhao W, Fakhoury M, Jacqz-Aigrain E. Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit. 2010;32:688–99. https://doi.org/10.1097/FTD.0b013e3181f6502d.

    Article  CAS  PubMed  Google Scholar 

  202. Fanta S, Niemi M, Jönsson S, Karlsson MO, Holmberg C, Neuvonen PJ, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics. 2008;18:77–90. https://doi.org/10.1097/FPC.0b013e3282f3ef72.

    Article  CAS  PubMed  Google Scholar 

  203. Ferraresso M, Tirelli A, Ghio L, Grillo P, Martina V, Torresani E, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant. 2007;11:296–300. https://doi.org/10.1111/j.1399-3046.2006.00662.x.

    Article  CAS  PubMed  Google Scholar 

  204. Prausa SE, Fukuda T, Maseck D, Curtsinger KL, Liu C, Zhang K, et al. UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;85:495–500. https://doi.org/10.1038/clpt.2009.3.

    Article  CAS  PubMed  Google Scholar 

  205. Zhao W, Fakhoury M, Deschênes G, Roussey G, Brochard K, Niaudet P, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50:1280–91. https://doi.org/10.1177/0091270009357429.

    Article  CAS  PubMed  Google Scholar 

  206. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87:721–6. https://doi.org/10.1038/clpt.2010.17.

    Article  CAS  PubMed  Google Scholar 

  207. Eby C. Warfarin pharmacogenetics: does more accurate dosing benefit patients? Semin Thromb Hemost. 2012;38:661–6. https://doi.org/10.1055/s-0032-1326789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vear SI, Stein CM, Ho RH. Warfarin pharmacogenomics in children. Pediatr Blood Cancer. 2013;60:1402–7. https://doi.org/10.1002/pbc.24592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Institute of Medicine. In: Nielsen-Bohlman L, Panzer AM, Kindig DA, editors. Health literacy: a prescription to end confusion. Washington, DC: The National Academies Press; 2004. Available from: https://www.nap.edu/catalog/10883/health-literacy-a-prescription-to-end-confusion.

    Google Scholar 

  210. Kutner M, Greenberg E, Jin Y, Paulsen C. The Health Literacy of America’s Adults: results from the 2003 National Assessment of Adult Literacy (NCES 2006-483). Washington, DC: U.S. Department of Education, National Center for Education Statistics; 2006. Available from: https://nces.ed.gov/pubs2006/2006483.pdf.

    Google Scholar 

  211. Lea DH, Kaphingst KA, Bowen D, Lipkus I, Hadley DW. Communicating genetic and genomic information: health literacy and numeracy considerations. Public Health Genomics. 2011;14:279–89. https://doi.org/10.1159/000294191.

    Article  CAS  PubMed  Google Scholar 

  212. Lanie AD, Jayaratne TE, Sheldon JP, Kardia SLR, Anderson ES, Feldbaum M, et al. Exploring the public understanding of basic genetic concepts. J Genet Couns. 2004;13:305–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19736696.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Golbeck AL, Ahlers-Schmidt CR, Paschal AM, Dismuke SE. A definition and operational framework for health numeracy. Am J Prev Med. 2005;29:375–6. https://doi.org/10.1016/j.amepre.2005.06.012.

    Article  PubMed  Google Scholar 

  214. Selkirk CG, Weissman SM, Anderson A, Hulick PJ. Physicians’ preparedness for integration of genomic and pharmacogenetic testing into practice within a major healthcare system. Genet Test Mol Biomarkers. 2013;17:219–25. https://doi.org/10.1089/gtmb.2012.0165.

    Article  PubMed  Google Scholar 

  215. Cooksey JA, Forte G, Benkendorf J, Blitzer MG. The state of the medical geneticist workforce: findings of the 2003 survey of American Board of Medical Genetics certified geneticists. Genet Med. 2005;7:439–43 [cited 2015 Dec 3]. https://doi.org/10.1097/01.GIM.0000172416.35285.9F.

    Article  PubMed  Google Scholar 

  216. West CP, Ficalora RD. Clinician attitudes toward biostatistics. Mayo Clin Proc. 2007;82:939–43. https://doi.org/10.4065/82.8.939.

    Article  PubMed  Google Scholar 

  217. Weiss ST, Samet JM. An assessment of physician knowledge of epidemiology and biostatistics. J Med Educ. 1980;55:692–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7401147.

    CAS  PubMed  Google Scholar 

  218. Rao G. Physician numeracy: essential skills for practicing evidence-based medicine. Fam Med. 2008;40:354–8. Available from: http://www.stfm.org/fmhub/fm2008/May/Goutham354.pdf.

    PubMed  Google Scholar 

  219. Wulff HR, Andersen B, Brandenhoff P, Guttler F. What do doctors know about statistics? Stat Med. 1987;6:3–10. https://doi.org/10.1002/sim.4780060103.

    Article  CAS  PubMed  Google Scholar 

  220. Rao G, Kanter SL. Physician numeracy as the basis for an evidence-based medicine curriculum. Acad Med. 2010;85:1794–9. https://doi.org/10.1097/ACM.0b013e3181e7218c.

    Article  PubMed  Google Scholar 

  221. Patay BA, Topol EJ. The unmet need of education in genomic medicine. Am J Med. 2012;125:5–6. https://doi.org/10.1016/j.amjmed.2011.05.005.

    Article  PubMed  Google Scholar 

  222. Dhar SU, Alford RL, Nelson EA, Potocki L. Enhancing exposure to genetics and genomics through an innovative medical school curriculum. Genet Med. 2012;14:163–7. https://doi.org/10.1038/gim.0b013e31822dd7d4.

    Article  PubMed  Google Scholar 

  223. Matloff E, Caplan A. Direct to confusion: lessons learned from marketing BRCA testing. Am J Bioeth. 2008;8:5–8. https://doi.org/10.1080/15265160802248179.

    Article  PubMed  Google Scholar 

  224. Rosenfeld JA, Mason CE. Pervasive sequence patents cover the entire human genome. Genome Med. 2013;5:27. https://doi.org/10.1186/gm431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Klein RD. AMP v myriad: the supreme court gives a win to personalized medicine. J Mol Diagn. 2013;15:731–2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525157813001530.

    Article  PubMed  Google Scholar 

  226. Graff GD, Phillips D, Lei Z, Oh S, Nottenburg C, Pardey PG. Not quite a myriad of gene patents. Nat Biotechnol. 2013;31:404–10. https://doi.org/10.1038/nbt.2568.

    Article  CAS  PubMed  Google Scholar 

  227. Guttmacher AE, Collins FS. Realizing the promise of genomics in biomedical research. JAMA. 2005;294:1399–402. https://doi.org/10.1001/jama.294.11.1399.

    Article  CAS  PubMed  Google Scholar 

  228. Janssens ACJW. Is the time right for translation research in genomics? Eur J Epidemiol. 2008;23:707–10. https://doi.org/10.1007/s10654-008-9293-8.

    Article  PubMed  Google Scholar 

  229. Veenstra DL, Piper M, Haddow JE, Pauker SG, Klein R, Richards CS, et al. Improving the efficiency and relevance of evidence-based recommendations in the era of whole-genome sequencing: an EGAPP methods update. Genet Med. 2013;15:14–24. https://doi.org/10.1038/gim.2012.106.

    Article  PubMed  Google Scholar 

  230. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. The EGAPP initiative: lessons learned. Genet Med. 2014;16:217–24. https://doi.org/10.1038/gim.2013.110.

    Article  Google Scholar 

  231. Wade CH, McBride CM, Kardia SLR, Brody LC. Considerations for designing a prototype genetic test for use in translational research. Public Health Genomics. 2010;13:155–65. Available from: https://www.karger.com/DOI/10.1159/000236061.

    Article  CAS  PubMed  Google Scholar 

  232. Botkin JR. Ethical issues in pediatric genetic testing and screening. Curr Opin Pediatr. 2016;28:700–4. https://doi.org/10.1097/MOP.0000000000000418.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Botkin JR, Belmont JW, Berg JS, Berkman BE, Bombard Y, Holm IA, et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am J Hum Genet. 2015;97:6–21. https://doi.org/10.1016/j.ajhg.2015.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lucassen A, Parker M. Revealing false paternity: some ethical considerations. Lancet. 2001;357:1033–5. https://doi.org/10.1016/S0140-6736(00)04240-9.

    Article  CAS  PubMed  Google Scholar 

  235. Schroder NM. The dilemma of unintentional discovery of misattributed paternity in living kidney donors and recipients. Curr Opin Organ Transplant. 2009;14:196–200. https://doi.org/10.1097/mot.0b013e328327b21f.

    Article  PubMed  Google Scholar 

  236. Macintyre S, Sooman A. Non-paternity and prenatal genetic screening. Lancet. 1991;338:869–71. https://doi.org/10.1016/0140-6736(91)91513-t.

    Article  CAS  PubMed  Google Scholar 

  237. Gjertson DW, Brenner CH, Baur MP, Carracedo A, Guidet F, Luque JA, et al. ISFG: recommendations on biostatistics in paternity testing. Forensic Sci Int Genet. 2007;1:223–31. https://doi.org/10.1016/j.fsigen.2007.06.006.

    Article  PubMed  Google Scholar 

  238. Ross LF. Disclosing misattributed paternity. Bioethics. 1996;10:114–30. https://doi.org/10.1111/j.1467-8519.1996.tb00111.x.

    Article  PubMed  Google Scholar 

  239. Wertz DC, Fletcher JC. Ethics and medical genetics in the United States: a national survey. Am J Med Genet. 1988;29:815–27. https://doi.org/10.1002/ajmg.1320290411.

    Article  CAS  PubMed  Google Scholar 

  240. Wertz DC, Fletcher JC, Mulvihillt JJ. Medical geneticists confront ethical dilemmas: cross-cultural comparisons among nations. Am Hum Genet. 1990;46:1200–13.

    CAS  Google Scholar 

  241. Institute of Medicine (US) Committee on Assessing Genetic Risks. In: Andrews LB, Fullarton JE, Holtzman NA, Motulsky AG, editors. Assessing genetic risks: implications for health and social policy. Washington, DC: National Academies Press (US); 2014. https://doi.org/10.17226/2057.

    Chapter  Google Scholar 

  242. Wolf SM, Crock BN, Van Ness B, Lawrenz F, Kahn JP, Beskow LM, et al. Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genet Med. 2012;14:361–84. https://doi.org/10.1038/gim.2012.23.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74. https://doi.org/10.1038/gim.2013.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dorschner MO, Amendola LM, Turner EH, Robertson PD, Shirts BH, Gallego CJ, et al. Actionable, pathogenic incidental findings in 1,000 participants’ exomes. Am J Hum Genet. 2013;93:631–40. https://doi.org/10.1016/j.ajhg.2013.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hayeems RZ, Miller FA, Li L, Bytautas JP. Not so simple: a quasi-experimental study of how researchers adjudicate genetic research results. Eur J Hum Genet. 2011;19:740–7. https://doi.org/10.1038/ejhg.2011.34.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Eguale T, Bartlett G, Tamblyn R. Rare visible disorders/diseases as individually identifiable health information. AMIA Annu Symp Proc. 2005;947. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16779234.

  247. Kaye J. The tension between data sharing and the protection of privacy in genomics research. Annu Rev Genomics Hum Genet. 2012;13:415–31. https://doi.org/10.1146/annurev-genom-082410-101454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lin Z, Owen AB, Altman RB. Genetics. Genomic research and human subject privacy. Science. 2004;305:183. https://doi.org/10.1126/science.1095019.

    Article  CAS  PubMed  Google Scholar 

  249. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science. 2013;339:321–4. https://doi.org/10.1126/science.1229566.

    Article  CAS  PubMed  Google Scholar 

  250. Fox S. After Dr Google: peer-to-peer health care. Pediatrics. 2013;131(Suppl 4):S224–5. https://doi.org/10.1542/peds.2012-3786K.

    Article  PubMed  Google Scholar 

  251. Rodriguez LL, Brooks LD, Greenberg JH, Green ED. The complexities of genomic identifiability. Science. 2013;339:275.

    Article  CAS  PubMed  Google Scholar 

  252. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science. JAMA. 2001;285:540–4. https://doi.org/10.1001/jama.285.5.540.

    Article  CAS  PubMed  Google Scholar 

  253. Rothstein MA, Anderlik MR. What is genetic discrimination, and when and how can it be prevented? Genet Med. 2001;3:354–8.

    Article  CAS  PubMed  Google Scholar 

  254. Hudson KL, Rothenberg KH, Andrews LB, Kahn MJ, Collins FS. Genetic discrimination and health insurance: an urgent need for reform. Science. 1995;270:391–3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7569991.

    Article  CAS  PubMed  Google Scholar 

  255. Rothenberg K, Fuller B, Rothstein M, Duster T, Ellis Kahn MJ, Cunningham R, et al. Genetic information and the workplace: legislative approaches and policy changes. Science. 1997;275:1755–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9122681.

    Article  CAS  PubMed  Google Scholar 

  256. Van Hoyweghen I, Horstman K. European practices of genetic information and insurance: lessons for the Genetic Information Nondiscrimination Act. JAMA. 2008;300:326–7. https://doi.org/10.1001/jama.2008.62.

    Article  PubMed  Google Scholar 

  257. Hudson KL, Holohan MK, Collins FS. Keeping pace with the times—the Genetic Information Nondiscrimination Act of 2008. N Engl J Med. 2008;358:2661–3. https://doi.org/10.1056/NEJMp0803964.

    Article  CAS  PubMed  Google Scholar 

  258. Bombard Y, Veenstra G, Friedman JM, Creighton S, Currie L, Paulsen JS, et al. Perceptions of genetic discrimination among people at risk for Huntington’s disease: a cross sectional survey. BMJ. 2009;338:b2175. https://doi.org/10.1136/bmj.b2175.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Murashige N, Tanimoto T, Kusumi E. Fear of genetic discrimination in Japan. Lancet. 2012;380:730. https://doi.org/10.1016/S0140-6736(12)61407-X.

    Article  PubMed  Google Scholar 

  260. Taylor S, Treloar S, Barlow-Stewart K, Stranger M, Otlowski M. Investigating genetic discrimination in Australia: a large-scale survey of clinical genetics clients. Clin Genet. 2008;74:20–30. https://doi.org/10.1111/j.1399-0004.2008.01016.x.

    Article  CAS  PubMed  Google Scholar 

  261. Anon. What’s brewing in genetic testing. Nat Genet. 2002;32:553–4. https://doi.org/10.1038/ng1202-553.

    Article  CAS  Google Scholar 

  262. Hudson K, Javitt G, Burke W, Byers P, American Society of Human Genetics Social Issues Committee. ASHG statement* on direct-to-consumer genetic testing in the United States. Obstet Gynecol. 2007;110:1392–5. https://doi.org/10.1097/01.AOG.0000292086.98514.8b.

    Article  PubMed  Google Scholar 

  263. McCarthy M. FDA halts sale of genetic test sold to consumers. BMJ. 2013;347:f7126. https://doi.org/10.1136/bmj.f7126.

    Article  PubMed  Google Scholar 

  264. Borry P, van Hellemondt RE, Sprumont D, Jales CFD, Rial-Sebbag E, Spranger TM, et al. Legislation on direct-to-consumer genetic testing in seven European countries. Eur J Hum Genet. 2012;20:715–21. https://doi.org/10.1038/ejhg.2011.278.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Bloss CS, Darst BF, Topol EJ, Schork NJ. Direct-to-consumer personalized genomic testing. Hum Mol Genet. 2011;20:R132–41. https://doi.org/10.1093/hmg/ddr349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Caulfield T, McGuire AL. Direct-to-consumer genetic testing: perceptions, problems, and policy responses. Annu Rev Med. 2012;63:23–33. https://doi.org/10.1146/annurev-med-062110-123753.

    Article  CAS  PubMed  Google Scholar 

  267. Howard HC, Avard D, Borry P. Are the kids really all right? Eur J Hum Genet. 2011;19:1122–6. https://doi.org/10.1038/ejhg.2011.94.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Borry P, Fryns J-P, Schotsmans P, Dierickx K. Carrier testing in minors: a systematic review of guidelines and position papers. Eur J Hum Genet. 2006;14:133–8. https://doi.org/10.1038/sj.ejhg.5201509.

    Article  PubMed  Google Scholar 

  269. Tracy EE. Are doctors prepared for direct-to-consumer advertising of genetics tests? Obstet Gynecol. 2007:1389–91. https://doi.org/10.1097/01.AOG.0000295601.75089.6f.

  270. McGuire AL, Burke W. An unwelcome side effect of direct-to-consumer personal genome testing: raiding the medical commons. JAMA. 2008;300:2669–71. https://doi.org/10.1001/jama.2008.803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Reed FA, Aquadro CF. Mutation, selection and the future of human evolution. Trends Genet. 2006;22:479–84. https://doi.org/10.1016/j.tig.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  272. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335:823–8. https://doi.org/10.1126/science.1215040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lemaire .

Editor information

Editors and Affiliations

Glossary

Alleles

Alternative forms of a gene at the same locus.

Alternative splicing

Formation of diverse mRNAs through differential splicing of an mRNA precursor.

Autosome

Any chromosome (1–22) other than the sex chromosomes X and Y.

cDNA, complementary DNA

DNA sequence that contains only exonic sequences and was made from an mRNA molecule.

Centimorgan

Length of DNA that on average has 1 crossover per 100 gametes.

Cis

Location of two genes/changes on the same chromosome.

Codon

Three consecutive bases/nucleotides in DNA/RNA that specifies an amino acid.

Compound heterozygote

Individual with two different mutant alleles at a locus.

Consanguineous

Mating between individuals who share at least one common ancestor.

Conservation

Sequence similarity for genes present in two distinct organisms or for gene families; can be detected by measuring the sequence similarity at the nucleotide (DNA or RNA) or amino acid (protein) level.

Crossover

Exchange of genetic material between homologous chromosomes during meiosis.

Digenic inheritance

Two genes interacting to produce a disease phenotype.

Diploid

Chromosome number of somatic cells.

Domain

Segment of a protein associated with a specialized structure or function.

Dominant

Trait expressed in the heterozygote.

Downstream

Sequence that is distal or 3′ from the reference point.

Empiric risk

Recurrence risk based on experience rather than calculation.

Epigenetics

Term describing non-mutational phenomena (e.g., methylation and acetylation) that modify the expression of a gene.

Euchromatin

Majority of nuclear DNA that remains relatively unfolded during most of the cell cycle and is therefore accessible to transcriptional machinery.

Exon

Segment of a gene (usually protein-coding) that remains after splicing of the primary RNA transcript.

Expressivity

Variation in the severity of a genetic trait.

Genotype

Genetic constitution of the organism; usually refers to a particular pair of alleles the individual carries at a given locus of the genome.

Germline

Cell lineage resulting in eggs or sperm.

Germline mutation

Any detectable, heritable variation in the lineage of germ cells transmitted to offspring while those in somatic cells are not.

Gonadal (germline) mosaicism

Occurrence of more than one genetic constitution in the precursor cells of eggs or sperm.

Haplotype

Group of nearby, closely linked alleles inherited together as a unit.

Heterozygote

Person with one normal and one mutant allele at a given locus on a pair of homologous chromosomes.

Homozygote

Person with identical alleles at a given locus on a pair of homologous chromosomes.

Imprinting

Parent-specific expression or repression of genes or chromosomes in offspring.

Intron

Segment of a gene transcribed into the primary RNA transcript but excised during exon splicing, thus does not code for a protein.

Isodisomy, uniparental

Inheritance of two copies of one homologue of a chromosome from one parent, with loss of the corresponding homologue from the other parent.

Karyotype

Classified chromosome complement of an individual or a cell.

Lyon hypothesis (X inactivation)

Principle of inactivation of one of the two X chromosomes in normal female cells (first proposed by Dr. Mary Lyon).

Mendelian

Following patterns of inheritance originally proposed by Gregor Mendel.

Monogenic disorder

Caused by mutations in a single gene.

Mosaicism

Occurrence of more than one genetic constitution arising in an individual after fertilization.

Multifactorial disorder

Caused by the interaction of multiple genetic and environmental factors.

Mutation

Change from the normal to an altered form of a particular gene that has harmful; pathogenic effects.

Oligogenic inheritance

Character that is determined by a small number of genes acting together.

Penetrance

Frequency with which a genotype manifests itself in a given phenotype.

Phenotype

Visible expression of the action of a particular gene; the clinical picture resulting from a genetic disorder.

Pleiotropy

Multiple effects of a single gene.

Polymerase chain reaction (PCR)

Amplification of DNA using a specific technique that allows analysis of minute original amounts of DNA.

Polymorphism

Usually used for any sequence variant present at a frequency greater than 1% in a population.

Recessive

A trait expressed only when both alleles at a given genetic locus are altered.

Recombination

Separation of alleles that are close together on the same chromosome by crossing over of homologous chromosomes at meiosis.

SNPs (single nucleotide polymorphism)

Usually used for any sequence variant present at a frequency greater than 1% in a population.

Somatic

Involving the body cells rather than the germline.

Syndrome, genetic

Nonrandom combination of features.

Teratogen

Any agent causing congenital malformations.

Trans

Location of two genes/changes on opposite chromosomes of a pair.

Transcription

Production of mRNA from the DNA template.

Translation

The process by which a protein is synthesized from an mRNA sequence.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waters, A., Lemaire, M. (2023). Molecular Diagnosis of Genetic Diseases of the Kidney: Primer for Pediatric Nephrologists. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics