Skip to main content
Log in

A brief history of rickets

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The review provides a historical perspective on the convergence of our understanding of the physiology and pathophysiology of bone, calcium, phosphorus, vitamin D, parathyroid hormone, and FGF-23 their impact on rickets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kolliker A (1873) Die Normale Resorption des Knochengewebes und Ihre Bedeutung fur die Entstehung der Typischen Knochenformen. FCW Vogel, Leipzig

    Google Scholar 

  2. Gegenbaue C (1874) Untersuchungen zur Vergleichenden Anatomie der Wirbeltiere. Heft 1 Carpus und Tarsus, Leipzig

    Google Scholar 

  3. Frost H (1960) In vivo osteocyte death. J Bone Joint Surg 42:138–143

    Article  PubMed  Google Scholar 

  4. Knight D (2004) Davy, sir Humphrey, baronet (1778–11829) in Oxford dictionary of national biography. Press, Oxford University

    Google Scholar 

  5. Weeks ME (1933) The discovery of elements XXI. Supplementary note on the discovery of phosphorus. J Chem Educ 10:302

    Article  CAS  Google Scholar 

  6. Rey D, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporosis Int 20:1013–1021

    Article  CAS  Google Scholar 

  7. Berthold AA (1849) Uber die Transplantation der Hoden. Arch Anat Physiol Wiss Med 16:42–46

    Google Scholar 

  8. Eknoyan G (1995) A history of the parathyroid gland. Am J Kidney Dis 26:801–807

    Article  CAS  PubMed  Google Scholar 

  9. O’Rahilly R (1982) The discovery of the parathyroid glands. Bull Hist Med 56:263–264

    Google Scholar 

  10. Gley E (1891) Sur les functions du corps thyroïde. Comp Rendus Soc Biol Paris 43:841–842

    Google Scholar 

  11. Munson PL (1988) Parathyroid hormone and calcitonin. In: McCann SM (ed) Endocrinology people and ideas. Am Physiol Soc, Bethesda, pp 239–284

    Chapter  Google Scholar 

  12. Vassale G, General F (1896) Sugli effetti dell estirpazione delle gladioli paratiroide. Riv Patol Nero Ment 1:95–99

    Google Scholar 

  13. Albright F (1948) A page out of the history of hyperparathyroidism. J Clin Endocrinol 8:637–657

    Article  CAS  Google Scholar 

  14. MacCallum WG, Voegtlin C (1908) On the relation of parathyroid to calcium metabolism and the nature of tetany. Bull Johns Hopkins 19:91–92

    CAS  Google Scholar 

  15. MacCallum WG, Voegtlin C (1909) On the relation of tetany to parathyroid glands and to calcium metabolism. J Exp Med 11:118–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacCallum WG, Lambert RA, Vogel KM (1914) The removal of calcium from the blood by dialysis in the study of tetany. J Exp Med 20:149–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanson AM (1923) An elementary chemical study of the parathyroid glands of cattle. Mil Surg 53:280–284

    Google Scholar 

  18. Collip JB (1925) The extraction of parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem 63:385–438

    Google Scholar 

  19. Rasmussen H, Craig LC (1959) Purification of parathormone by using countercurrent distribution. J Am Chem Soc 81:503

    Article  Google Scholar 

  20. Greenwald I (1911) The effect of parathyroidectomy upon metabolism. Am J Phys 28:103–132

    Article  CAS  Google Scholar 

  21. Barnicot NA (1948) The local action of the parathyroid and other tissue on bone in intracerebral grafts. J Anat 82:233–248

    PubMed  PubMed Central  Google Scholar 

  22. Jahan J, Pitts RF (1948) Effect of parathormone on renal tubular reabsorption of phosphate and calcium. Am J Phys 155:42–49

    Article  CAS  Google Scholar 

  23. Berson SA, Yalow RS, Aurbach GD, Potts JT (1963) Immunoassay of bovine and human parathyroid hormone. Proc Nat Acad Sci 49:613–617

    Article  CAS  PubMed  Google Scholar 

  24. Sugar M, Gupta M, Navaneetan S (2010) Evolution and correct state for measuring parathyroid hormone. Biochem Medica 20:221–228

    Google Scholar 

  25. Juppner H (1994) Molecular cloning and characterization of a parathyroid hormone/parthyroid hormone-related peptide receptor: a member of an ancient family of G protein-coupled receptors. Curr Opin Nephrol Hyperts 3:378–381

    Google Scholar 

  26. Copp DH, Cheney B (1962) Calcitonin-a hormone from parathyroid that lowers the calcium level of blood. Nature 193:381–382

    Article  CAS  PubMed  Google Scholar 

  27. DeLuca HF (2014) History of the discovery of vitamin D and its metabolites. Bonekey Rep 3:479–487

    PubMed  PubMed Central  Google Scholar 

  28. Funk C (1911) The chemical nature of the substance the causes polyneuritis in birds produced by a diet of polished rice. J Physiol 43:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hopkins G (1912) Feeding experiments illustrating the importance of accessory food factors in normal diets. J Physiol 44:425–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCollum EV, Davis M (1913) The necessity of certain lipids in the diet during growth. J Biol Chem 25:167–175

    Google Scholar 

  31. McCollum EV, Simmonds N, Pitz W (1916) The relation of the unidentified dietary factors, the fat soluble a and the water soluble B of the does to growth properties of milk. J Biol Chem 27:3338–3341

    Google Scholar 

  32. Osborne TB, Mendel LB (1917) The role of vitamins in the diet. J Biol Chem 31:149–163

    CAS  Google Scholar 

  33. Mellanby E (1919) An experimental investigation of rickets. Lancet 1:407–412

    Google Scholar 

  34. McCollum EV, Simmonds N, Becker JE, Shipley PG (1922) An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 53:293–298

  35. Askew FA, Bourdiillon RB, Bruce HM, Jenkins RGC, Webster TA (1931) A distillation of vitamin D. Proc R Soc B 107:76–90

    Google Scholar 

  36. Nicolaysen R (1937) Studies upon the mode of action of vitamin D III. The influence of vitamin D on the absorption of calcium and phosphorus in the rat. Biochem J 31:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schecter D, Rosen SM (1960) Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Phys 196:357–362

    Article  Google Scholar 

  38. Chen TC, Castillo L, Korycka-Dahl M, DeLuca HF (1974) Role of vitamin D metabolites in phosphate transport in intestine. J Nutr 104:1056–1060

    Article  CAS  PubMed  Google Scholar 

  39. Marshall PA, Hernandez L, Kaneko I, Widener T, Tabacaru C, Aguayo I, Jarotka P (2012) Discovery of novel vitamin D receptor interacting proteins that modulate 1,25 dihydroxyvitamin D3 signaling. J Steroid Biochem Mol Biol 13L:147–159

    Article  CAS  Google Scholar 

  40. Blunt JW, Tanaka Y, DeLuca HF (1968) The biological activity of 25-hydroxycholecalciferol, a metabolite of vitamin D. Proc Natl Acad Sci U S A 61:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blunt JW, DeLuca HF (1967) The synthesis of 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D Biochemistry 8:671–675

    Google Scholar 

  42. Norman AW, Myrtle JF, Midgett RJ, Nowicki HG, Williams V, Popjack G (1971) 1,25-dihydroxycholecalciferol: identification of the proposed active form of vitamin D3 in the intestine. Science 173:51–54

    Article  CAS  PubMed  Google Scholar 

  43. Semmler J, Holick MF, Schnoes HK, Deluca HF (1972) The synthesis of 1alpha,25-dihydroxycholecalciferol-a metabolically active form of vitamin D3. Tetrahedron Lett 40:4147–4150

    Article  Google Scholar 

  44. Hess AR (1929) Rickets including osteomalacia and tetany. Lea and Febiger, Philadelphia

    Google Scholar 

  45. Still GF (1931) The history of pediatrics. The Progress of the study of children up to the end of the 18th century. Oxford University press, London

    Google Scholar 

  46. McCollum EV (1957) A Brief History of Nutrition. Riverside Press, Cambridge MA, pp 234–236

  47. Palm T (1890) The geographical distribution and etiology of rickets. Practitioner 45:270–279–321–342

    Google Scholar 

  48. Huldshinsky K (1919) Heilung von Rachitis durch Künstlich Hohen-sonne. Deut Med Wochenschau 45:712–713

    Article  Google Scholar 

  49. Hess AF (1922) The prevention and cure of rickets by sunlight. Am J Public Health 12:104–107

    Article  CAS  Google Scholar 

  50. Steenbock H, Block A (1924) The induction of growth promoting and calcifying properties in a ration by exposure to light. Science 60:124–125

    Article  Google Scholar 

  51. Steenbock H, Block A (1925) Fat soluble vitamins XXIII. The induction of growth calcifying properties in fat and their unsaponifiable constituents by exposure to light. J Biol Chem 64:263–298

    CAS  Google Scholar 

  52. Windhaus A, Lette H, Schenck KF (1935) 7-dehydrocholesterol. Ann Chem 520:98–107

    Article  Google Scholar 

  53. Chesney RW, Moorthy AV, Eisman JA, Jax DK, Mazess RB, DeLuca HF (1978) Increased growth after long term 1alpha, 25-vitamin D3 in childhood renal osteodystrophy. N Engl J Med 298:238–242

    Article  CAS  PubMed  Google Scholar 

  54. Chesney RW (1978) 1,25-dihydroxyvitamin D3 in reversal of secondary hyperparathyroidism in uremic osteodystrophy. N Engl J Med 298:1424–1425

    Article  Google Scholar 

  55. Chesney RW, Mazess RB, Rose PG, Jax DK (1977) Bone mineral status measured by direct photon absorptiometry in childhood renal disease. Pediatrics 60:864–872

    CAS  PubMed  Google Scholar 

  56. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498

    Article  CAS  PubMed  Google Scholar 

  57. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Kumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into specific receptor FGF-23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  58. Saito H, Kusano K, Kimosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    Article  CAS  PubMed  Google Scholar 

  59. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF-23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Filser D, Kolleritis B, Neyer V, Ankerst DP, Chotta K, Lingenhal A, Ritz E, Kronenberg F, Kuen E, Konig P, Kraatz G, MannJF MGA, Kohler H, Riegler P (2007) Fibroblast growth factor-23 (FGF-23) predicts progression of chronic kidney disease. The Mild to Moderate kidney Disease (MMKD) Study J Am Soc Nephrol 18:2600–2608

    Google Scholar 

  61. Shimada T, Mizutani S, Muto T, Yaneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T (2001) Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Mettinger T, Strom TM (2000) Autosomal dominant hypophosphatemic rickets is associated with a mutation in FGF-23. Nat Genet 26:345–348

    Article  CAS  Google Scholar 

  63. Carpenter TO, Whyte MP, Imel EA, Boot AM, Hagler W, Linglart A, Padidela R, van’tHoff W, Mao M, Chen C-Y, Skrinar A, Kakkis E, SanMartin J, Portale A (2018) Burosomab therapy in children with x-linked hypophosphatemia. N Engl J Med 378:1987–1998

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Friedman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers: 1. c; 2. d; 3. b; 4. a; 5. d

Summary points

1. Rickets, a condition that results in soft and deformed bones in children, was a common condition, especially in the Northern hemisphere, and exacerbated by the industrial revolution and its resultant reduction in sunlight.

2. Progress in the treatment and prevention of rickets moved forward in the late 19th and 20th century with the findings that: (1) cod liver oil contained a substance that helped heal bones, (2) sunlight or UV light also helped heal bones, (3) the active substance was vitamin D. Irradiation of food, but especially milk, made the important precursor of the active form of vitamin D widely available in a form more palatable than cod liver oil.

3. In the 20th century, the interplay of bone, parathyroid hormone, vitamin D, calcium, and phosphorus vastly improved our understanding of normal bone health and greatly improved our understanding of bone pathology in rickets.

4. With a better understanding of the prevention and treatment of nutritional rickets, advancements in the understanding of the pathophysiology of rarer forms of rickets (chronic kidney disease, hypophosphatemic rickets) and tools to treat them, took place in the latter half of the 20th century and into the 21st century. These have included the synthesis of 1,25 dihydroxyvitamin D and the FGF-23 monoclonal antibody, burosomab.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A. A brief history of rickets. Pediatr Nephrol 35, 1835–1841 (2020). https://doi.org/10.1007/s00467-019-04366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04366-9

Keywords

Navigation