Skip to main content
Log in

Longer duration of obesity is associated with a reduction in urinary angiotensinogen in prepubertal children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

We aimed to study the impact of obesity on urinary excretion of angiotensinogen (U-AGT) in prepubertal children, focusing on the duration of obesity and gender. Also, we aimed to evaluate whether plasma angiotensinogen (P-AGT) and hydrogen peroxide (H2O2) play a role in the putative association.

Methods

Cross-sectional evaluation of 305 children aged 8–9 years (160 normal weight, 86 overweight, and 59 obese). Anthropometric measurements and 24-h ambulatory blood pressure monitoring were performed. Angiotensinogen (AGT) was determined by a commercial enzyme-linked immunosorbent assay (ELISA) kit and H2O2 by a microplate fluorometric assay.

Results

U-AGT and P-AGT levels were similar across body mass index (BMI) groups and between sexes. However, boys who were overweight/obese since the age of 4 years presented lower levels of U-AGT compared with those of normal weight at the same age. In children who were overweight/obese since the age of 4, urinary H2O2 decreased with P-AGT.

Conclusions

A higher duration of obesity was associated with decreased U-AGT in boys, thus reflecting decreased intrarenal activity of the renin–angiotensin system. Also, children with a longer duration of obesity showed an inverse association between urinary H2O2 and P-AGT. Future studies should address whether these results reflect an early compensatory mechanism to limit obesity-triggered renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NME, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ml, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781

    Article  PubMed  PubMed Central  Google Scholar 

  2. Savino A, Pelliccia P, Chiarelli F, Mohn A (2010) Obesity-related renal injury in childhood. Horm Res Paediatr 73:303–311

    Article  CAS  PubMed  Google Scholar 

  3. Jolliffe CJ, Janssen I (2006) Vascular risks and management of obesity in children and adolescents. Vasc Health Risk Manag 2:171–187

    Article  PubMed  PubMed Central  Google Scholar 

  4. Srinivasan SR, Bao W, Wattigney WA, Berenson GS (1996) Adolescent overweight is associated with adult overweight and related multiple cardiovascular risk factors: the Bogalusa Heart Study. Metabolism 45:235–240

    Article  CAS  PubMed  Google Scholar 

  5. Kalupahana NS, Moustaid-Moussa N (2012) The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms. Crit Rev Biochem Mol Biol 47:379–390

    Article  CAS  PubMed  Google Scholar 

  6. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A, Dessì-Fulgheri P, Rappelli A (2008) Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 26:831–843

    Article  CAS  PubMed  Google Scholar 

  7. Thethi T, Kamiyama M, Kobori H (2012) The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep 14:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frigolet ME, Torres N, Tovar AR (2013) The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem 24:2003–2015

    Article  CAS  PubMed  Google Scholar 

  9. Yasue S, Masuzaki H, Okada S, Ishii T, Kozuka C, Tanaka T, Fujikura J, Ebihara K, Hosoda K, Katsurada A, Ohashi N, Urushihara M, Kobori H, Morimoto N, Kawazoe T, Naitoh M, Okada M, Sakaue H, Suzuki S, Kazuwa N (2010) Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens 23:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooper R, McFarlane-Anderson N, Bennett FI, Wilks R, Puras A, Tewksbury D, Ward R, Forrester T (1997) ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 11:107–111

    Article  CAS  PubMed  Google Scholar 

  11. Gu P, Xu A (2013) Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Rev Endocr Metab Disord 14:49–58

    Article  CAS  PubMed  Google Scholar 

  12. Okada S, Kozuka C, Masuzaki H, Yasue S, Ishii-Yonemoto T, Tanaka T, Yamamoto Y, Noguchi M, Kusakabe T, Tomita T, Fujikura J, Ebihara K, Hosoda K, Sakaue H, Kobori H, Ham M, Lee YS, Kim JB, Saito Y, Kazuwa N (2010) Adipose tissue-specific dysregulation of angiotensinogen by oxidative stress in obesity. Metabolism 59:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287

    Article  CAS  PubMed  Google Scholar 

  14. Kuroczycka-Saniutycz E, Wasilewska A, Sulik A, Milewski R (2013) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity in adolescents with primary hypertension. Pediatr Nephrol 28:1113–1119

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saito T, Urushihara M, Kotani Y, Kagami S, Kobori H (2009) Increased urinary angiotensinogen is precedent to increased urinary albumin in patients with type 1 diabetes. Am J Med Sci 338:478–480

    Article  PubMed  PubMed Central  Google Scholar 

  16. Urushihara M, Nagai T, Kinoshita Y, Nishiyama S, Suga K, Ozaki N, Jamba A, Kondo S, Kobori H, Kagami S (2015) Changes in urinary angiotensinogen posttreatment in pediatric IgA nephropathy patients. Pediatr Nephrol 30:975–982

    Article  PubMed  Google Scholar 

  17. Barton M, Carmona R, Morawietz H, D’Uscio LV, Goettsch W, Hillen H, Haudenschild CC, Krieger JE, Munter K, Lattmann T, Luscher TF, Shaw S (2000) Obesity is associated with tissue-specific activation of renal angiotensin-converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension 35:329–336

    Article  CAS  PubMed  Google Scholar 

  18. Sato E, Mori T, Satoh M, Fujiwara M, Nakamichi Y, Oba I, Ogawa S, Kinouchi Y, Sato H, Ito S, Hida W (2016) Urinary angiotensinogen excretion is associated with blood pressure in obese young adults. Clin Exp Hypertens 38:203–208

    Article  CAS  PubMed  Google Scholar 

  19. The NS, Richardson AS, Gordon-Larsen P (2013) Timing and duration of obesity in relation to diabetes: findings from an ethnically diverse, nationally representative sample. Diabetes Care 36:865–872

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdullah A, Amin FA, Hanum F, Stoelwinder J, Tanamas S, Wolf R, Wong E, Peeters A (2016) Estimating the risk of type-2 diabetes using obese-years in a contemporary population of the Framingham Study. Glob Health Action 9:30421

    Article  Google Scholar 

  21. Kang AK, Miller JA (2002) Effects of gender on the renin-angiotensin system, blood pressure, and renal function. Curr Hypertens Rep 4:143–151

    Article  PubMed  Google Scholar 

  22. Remuzzi G, Perico N, Macia M, Ruggenenti P (2005) The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl S57–S65

  23. Sachse A, Wolf G (2007) Angiotensin II-induced reactive oxygen species and the kidney. J Am Soc Nephrol 18:2439–2446

    Article  CAS  PubMed  Google Scholar 

  24. Patinha D, Afonso J, Sousa T, Morato M, Albino-Teixeira A (2014) Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats. Life Sci 108:71–79

    Article  CAS  PubMed  Google Scholar 

  25. Sousa T, Oliveira S, Afonso J, Morato M, Patinha D, Fraga S, Carvalho F, Albino-Teixeira A (2012) Role of H(2)O(2) in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol 166:2386–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brezniceanu M-L, Liu F, Wei C-C, Tran S, Sachetelli S, Zhang S-L, Guo D-F, Filep JG, Ingelfinger JR, Chan JSD (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923

    Article  CAS  PubMed  Google Scholar 

  27. Larsen PS, Kamper-Jorgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, Brophy S, Casas M, Charles M-AA, Devereux G, Eggesbo M, Fantini MP, Frey U, Gehring U, Grazuleviciene R, Henriksen TB, Hertz-Picciotto I, Heude B, Hryhorczuk DO, Inskip H, Jaddoe VWV, Lawlor DA, Ludvigsson J, Kelleher C, Kiess W, Koletzko B, Kuehni CE, Kull I, Kyhl HB, Magnus P, Momas I, Murray D, Pekkanen J, Polanska K, Porta D, Poulsen G, Richiardi L, Roeleveld N, Skovgaard AM, Sram RJ, Strandberg-Larsen K, Thijs C, Van Eijsden M, Wright J, Vrijheid M, Andersen A-MNM, Kamper-Jørgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, Brophy S, Casas M, Charles M-AA, Devereux G, Eggesbø M, Fantini MP, Frey U, Gehring U, Grazuleviciene R, Henriksen TB, Hertz-Picciotto I, Heude B, Hryhorczuk DO, Inskip H, Jaddoe VWV, Lawlor DA, Ludvigsson J, Kelleher C, Kiess W, Koletzko B, Kuehni CE, Kull I, Kyhl HB, Magnus P, Momas I, Murray D, Pekkanen J, Polanska K, Porta D, Poulsen G, Richiardi L, Roeleveld N, Skovgaard AM, Sram RJ, Strandberg-Larsen K, Thijs C, Van Eijsden M, Wright J, Vrijheid M, Andersen A-MNM (2013) Pregnancy and birth cohort resources in europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol 27:393–414

    Article  PubMed  Google Scholar 

  28. Correia-Costa L, Afonso AC, Schaefer F, Guimarães JT, Bustorff M, Guerra A, Barros H, Azevedo A (2015) Decreased renal function in overweight and obese prepubertal children. Pediatr Res 78:436–444

    Article  PubMed  Google Scholar 

  29. Duzova A, Yalçinkaya F, Baskin E, Bakkaloglu A, Soylemezoglu O (2013) Prevalence of hypertension and decreased glomerular filtration rate in obese children: results of a population-based field study. Nephrol Dial Transplant 28(Suppl 4):v166–171

    Article  Google Scholar 

  30. Kramer MS, Platt RW, Wen SW, Joseph KS, Allen A, Abrahamowicz M, Blondel B, Breart G, Bréart G, Breart G (2001) A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics 108:E35

    Article  CAS  PubMed  Google Scholar 

  31. Durão C, Severo M, Oliveira A, Moreira P, Guerra A, Barros H, Lopes C, Durao C, Severo M, Oliveira A, Moreira P, Guerra A, Barros H, Lopes C (2014) Evaluating the effect of energy-dense foods consumption on preschool children’s body mass index: a prospective analysis from 2 to 4 years of age. Eur J Nutr 54:835–843

    Article  PubMed  Google Scholar 

  32. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Onis M, Lobstein T (2010) Defining obesity risk status in the general childhood population: which cut-offs should we use? Int J Pediatr Obes 5:458–460

    Article  PubMed  Google Scholar 

  34. Wuhl E, Witte K, Soergel M, Mehls O, Schaefer F (2002) Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 20:1995–2007

    Article  PubMed  Google Scholar 

  35. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48:221–230

    Article  CAS  PubMed  Google Scholar 

  36. Correia-Costa L, Morato M, Sousa T, Cosme D, Guimarães JT, Guerra A, Schaefer F, Afonso AC, Azevedo A, Albino-Teixeira A (2016) Urinary fibrogenic cytokines ET-1 and TGF-β1 are associated with urinary angiotensinogen levels in obese children. Pediatr Nephrol 31:455–464

    Article  PubMed  Google Scholar 

  37. Correia-Costa L, Sousa T, Morato M, Cosme D, Afonso J, Areias JC, Schaefer F, Guerra A, Caldas Afonso A, Azevedo A, Albino-Teixeira A (2016) Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. Br J Nutr 116:805–815

    Article  CAS  PubMed  Google Scholar 

  38. Mao YN, Liu W, Li YG, Jia GC, Zhang Z, Guan YJ, Zhou XF, Liu YF (2012) Urinary angiotensinogen levels in relation to renal involvement of Henoch-Schonlein purpura in children. Nephrology (Carlton) 17:53–57

    Article  CAS  Google Scholar 

  39. Taranta-Janusz K, Wasilewska A, Debek W, Filonowicz R, Michaluk-Skutnik J, Dębek W, Fiłonowicz R, Michaluk-Skutnik J (2013) Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr 102:e429–433

    Article  CAS  PubMed  Google Scholar 

  40. Nishizaki N, Hirano D, Nishizaki Y, Fujinaga S, Nagata S, Ohtomo Y, Kaneko K, Shimizu T (2014) Increased urinary angiotensinogen is an effective marker of chronic renal impairment in very low birth weight children. Clin Exp Nephrol 18:642–648

    Article  CAS  PubMed  Google Scholar 

  41. Luo H, Wang X, Chen C, Wang J, Zou X, Li C, Xu Z, Yang X, Shi W, Zeng C (2015) Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. J Am Heart Assoc 4:102–110

    Article  Google Scholar 

  42. Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamaru M, Ishigami T, Yabana M, Kihara M, Inoue S, Ishii M (1997) Plasma angiotensinogen concentrations in obese patients. Am J Hypertens 10:629–633

    Article  CAS  PubMed  Google Scholar 

  43. Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P (2000) Increased adipose angiotensinogen gene expression in human obesity. Obes Res 8:337–341

    Article  PubMed  Google Scholar 

  44. Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45:356–362

    Article  CAS  PubMed  Google Scholar 

  45. Yanes LL, Sartori-Valinotti JC, Reckelhoff JF (2008) Sex steroids and renal disease: lessons from animal studies. Hypertension 51:976–981

    Article  CAS  PubMed  Google Scholar 

  46. Gluhovschi G, Gluhovschi A, Anastasiu D, Petrica L, Gluhovschi C, Velciov S (2012) Chronic kidney disease and the involvement of estrogen hormones in its pathogenesis and progression. Rom J Intern Med 50:135–144

    CAS  PubMed  Google Scholar 

  47. Klein KO, Baron J, Colli MJ, McDonnell DP, Cutler GB (1994) Estrogen levels in childhood determined by an ultrasensitive recombinant cell bioassay. J Clin Invest 94:2475–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Courant F, Aksglaede L, Antignac J-PP, Monteau F, Sorensen K, Andersson A-MM, Skakkebaek NE, Juul A, Le Bizec B (2010) Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92

    Article  CAS  PubMed  Google Scholar 

  49. Burt Solorzano CM, McCartney CR (2010) Obesity and the pubertal transition in girls and boys. Reproduction 140:399–410

    Article  PubMed  PubMed Central  Google Scholar 

  50. Correia-Costa L, Cosme D, Nogueira-Silva L, Morato M, Sousa T, Moura C, Mota C, Guerra A, Albino-Teixeira A, Areias JC, Schaefer F, Lopes C, Afonso AC, Azevedo A (2016) Gender and obesity modify the impact of salt intake on blood pressure in children. Pediatr Nephrol 31:279–288

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the families enrolled in Generation XXI for their kindness, all members of the research team for their enthusiasm and perseverance and the participating hospitals and their staff for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Morato.

Ethics declarations

The Generation XXI study was approved by the Ethics Committee of Centro Hospitalar São João, E.P.E. and Faculty of Medicine of the University of Porto, Portugal, and by the National Data Protection Commission. It complies with the Helsinki Declaration and the current national legislation. Written informed consent from parents (or their legal substitute) and verbal assent from children was obtained, concerning information and biological samples gathering.

Conflicts of interest

None of the authors have any financial or nonfinancial competing interests concerning the present study.

Sources of funding

This project was supported by funds from Fundo Europeu de Desenvolvimento Regional (FEDER) from Programa Operacional Factores de Competitividade – COMPETE (FCOMP-01-0124-FEDER-028751), by national funds from the Portuguese Foundation for Science and Technology (FCT) (PTDC/DTP-PIC/0239/2012) and by Calouste Gulbenkian Foundation, that granted the study design and data collection and analysis. Liane Correia-Costa was supported by FCT (grant SFRH/SINTD/95898/2013), Teresa Sousa was supported by FCT and POPH/FSE (EC) (Ciência 2008 and SFRH/BPD/112005) and Franz Schaefer was supported by the ERA-EDTA Research Programme and the KfH Foundation for Preventive Medicine. The Epidemiology Research Unit (EPIUnit) is funded by FCT (UID/DTP/04750/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morato, M., Correia-Costa, L., Sousa, T. et al. Longer duration of obesity is associated with a reduction in urinary angiotensinogen in prepubertal children. Pediatr Nephrol 32, 1411–1422 (2017). https://doi.org/10.1007/s00467-017-3639-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3639-y

Keywords

Navigation