Skip to main content

Advertisement

Log in

Potassium regulation in the neonate

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Potassium, the major cation in intracelluar fluids, is essential for vital biological functions. Neonates maintain a net positive potassium balance, which is fundamental to ensure somatic growth but places these infants, especially those born prematurely, at risk for life-threatening disturbances in potassium concentration [K+] in the extracellular fluid compartment. Potassium conservation is achieved by maximizing gastrointestinal absorption and minimizing renal losses. A markedly low glomerular filtration rate, plus adaptations in tubular transport along the nephron, result in low potassium excretion in the urine of neonates. Careful evaluation of clinical data using reference values that are normal for the neonate’s postmenstrual age is critical to avoid over-treating infants with laboratory results that represent physiologic values for their developmental stage. The treatment should be aimed at correcting the primary cause when possible. Alterations in the levels or sensitivity to aldosterone are common in neonates. In symptomatic patients, the disturbances in [K+] should be corrected promptly, with close electrocardiographic monitoring. Plasma [K+] should be monitored during the first 72 h of life in all premature infants born before 30 weeks of postmenstrual age as these infants are prone to develop non-oliguric hyperkalemia with potential serious complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lorenz JM, Kleinman LI, Markarian K (1997) Potassium metabolism in extremely low birth weight infants in the first week of life. J Pediatr 131:8–86

    Article  Google Scholar 

  2. Youn JH, McDonough AA (2009) Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 71:381–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agarwal R, Afzalpurkar R, Fordtran JS (1994) Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology 107:548–571

    Article  CAS  PubMed  Google Scholar 

  4. Codina J, Pressley TA, DuBose TD Jr (1997) Effect of chronic hypokalemia on H-K-ATPase expression in rat colon. Am J Physiol 272:F22–F30

    CAS  PubMed  Google Scholar 

  5. Rabelink TJ, Koomans HA, Hené RJ, Dorhout Mees EJ (1990) Early and late adjustment to potassium loading in humans. Kidney Int 38:942–947

    Article  CAS  PubMed  Google Scholar 

  6. Giebisch G, Krapf R, Wagner C (2007) Renal and extrarenal regulation of potassium. Kidney Int 72:397–410

    Article  CAS  PubMed  Google Scholar 

  7. Youn JH (2013) Gut sensing of potassium intake and its role in potassium homeostasis. Semin Nephrol 33:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rabinowitz L (1996) Aldosterone and potassium homeostasis. Kidney Int 49:1738–1742

    Article  CAS  PubMed  Google Scholar 

  9. Morita H, Fujiki N, Miyahara T, Lee K, Tanaka K (2000) Hepatoportal bumetanide-sensitive K-sensor mechanism controls urinary K excretion. Am J Physiol 278:R1134–R1139

    CAS  Google Scholar 

  10. Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H (2004) Effect of high-NaCl or high-KCl diet on hepatic Na+- and K+-receptor sensitivity and NKCC1 expression in rats. Am J Physiol 286:R591–R596

  11. Chen P, Guzman JP, Leong PK, Yang LE, Perianayagam A, Babilonia E, Ho JS, Youn JH, Wang WH, McDonough AA (2006) Modest dietary K restriction provokes insulin resistance of cellular K uptake and phosphorylation of renal outer medulla K channel without fall in plasma K+ concentration. Am J Physiol 290:C1355–C1363

  12. Aizman R, Grahnquist L, Celsi G (1998) Potassium homeostasis: ontogenic aspects. Acta Paediatr 87:609–617

    Article  CAS  PubMed  Google Scholar 

  13. Aizman R, Celsi G, Grahnquist L, Wang Z, Finkel Y, Aperia A (1996) Ontogeny of K+ transport in rat distal colon. Am J Physiol 271:G268–G274

  14. Stefano JL, Norman ME, Morales MC, Goplerud JM, Mishra OP, Delivoria-Papadopoulos M (1993) Decreased erythrocyte Na+, K(+)-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr 122:276–284

  15. Omar SE, DeCristofaro JD, Agarwal BI, LaGamma EF (2000) Effect of prenatal steroids on potassium balance in extremely low birth weight neonates. Pediatrics 106:561–567

    Article  CAS  PubMed  Google Scholar 

  16. Sato K, Kondo T, Iwao H, Honda S, Ueda K (1995) Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr 126:109–113

    Article  CAS  PubMed  Google Scholar 

  17. Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060

    Article  CAS  PubMed  Google Scholar 

  18. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F (2010) Glomerular filtration rate reference values in very preterm infants. Pediatrics 125:e1186–e1192

    Article  PubMed  Google Scholar 

  19. Schmidt U, Horster M (1977) Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol 233:F55–F60

    CAS  PubMed  Google Scholar 

  20. Schwartz GJ, Evan AP (1984) Development of solute transport in rabbit proximal tubule. III. Na-K-ATPase activity. Am J Physiol 246:F845–F852

    CAS  PubMed  Google Scholar 

  21. Wareing M, Wilson RW, Kibble JD, Green R (1995) Estimated potassium reflection coefficient in perfused proximal convoluted tubules of the anaesthetized rat in vivo. J Physiol 488:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kibble JD, Wareing M, Wilson RW, Green R (1995) Effect of barium on potassium diffusion across the proximal convoluted tubule of the anaesthetized rat. Am J Physiol 268:F778–F783

    CAS  PubMed  Google Scholar 

  23. Quigley R, Baum M (2005) Developmental changes in rabbit proximal straight tubule paracellular permeability. Am J Physiol 283:F525–F531

    Google Scholar 

  24. Baum M, Quigley R (2005) Maturation of rat proximal tubule chloride permeability. Am J Physiol 289:R1659–R1664

    CAS  Google Scholar 

  25. Haddad M, Lin F, Dwarakanath V, Cordes K, Baum M (2005) Developmental changes in proximal tubule tight junction membrane proteins. Pediatr Res 57:453–457

    Article  CAS  PubMed  Google Scholar 

  26. Lelievre-Pegorier M, Merlet-Benichou C, Roinel N, de Rouffignac C (1983) Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol 245:F15–F21

    CAS  PubMed  Google Scholar 

  27. Palmer LG, Schnermann J (2015) Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol 10:676–687

    Article  CAS  PubMed  Google Scholar 

  28. Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9:1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welling PA, Ho K (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol 29:F849–F863

    Google Scholar 

  30. Igarashi P, Vanden-Heuvel GB, Payne JA, Forbush B III (1995) Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter. Am J Physiol 269:F405–F418

    CAS  PubMed  Google Scholar 

  31. Gurkan S, Estilo GK, Wei Y, Satlin LM (2007) Potassium transport in the maturing kidney. Pediatr Nephrol 22:915–925

    Article  PubMed  Google Scholar 

  32. Martinerie L, Pussard E, Foix-L’hélias L, Petit F, Cosson C, Boileau P, Lombès M (2009) Physiological partial aldosterone resistance in human newborns. Pediatr Res 66:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aperia A, Broberger O, Herin P, Zetterström R (1979) Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr Scand 68:813–817

    Article  CAS  PubMed  Google Scholar 

  34. Vehaskari VM (1994) Ontogeny of cortical collecting duct sodium transport. Am J Physiol 267:F49–F54

    CAS  PubMed  Google Scholar 

  35. Martinerie L, Viengchareun S, Delezoide AL, Jaubert F, Sinico M, Prevot S, Boileau P, Meduri G, Lombe M (2009) Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates. Endocrinology 150:4414–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunau RT Jr, Webb HL, Borman SC (1974) Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J Clin Invest 54:1488–1495

    Article  PubMed  PubMed Central  Google Scholar 

  37. Engbretson BG, Stoner LC (1987) Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol 253:F896–F903

    CAS  PubMed  Google Scholar 

  38. Carrisoza-Gaytan R, Carattino MD, Kleyman TR, Satlin LM (2016) An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron. Am J Physiol 310:C243–C259

    Article  Google Scholar 

  39. Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458:157–168

    Article  CAS  PubMed  Google Scholar 

  40. Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol 280:F786–F793

  41. Satlin LM (2004) Developmental regulation of expression of renal potassium secretory channels. Curr Opin Nephrol Hypertens 13:445–450

    Article  CAS  PubMed  Google Scholar 

  42. Pácha J, Frindt G, Sackin H, Palmer LG (1991) Apical maxi K channels in intercalated cells of CCT. Am J Physiol 261:F696–F705

    PubMed  Google Scholar 

  43. Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M (2005) Expression of the potassium channel ROMK in adult and fetal human kidney. Histochem Cell Biol 123:553–559

    Article  PubMed  Google Scholar 

  44. Velázquez H, Ellison DH, Wright FS (1987) Chloride dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253:F555–F562

    PubMed  Google Scholar 

  45. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza FJ, Gitleman HJ, Lifton RP (1996) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    Article  CAS  PubMed  Google Scholar 

  46. Ellison DH, Terker AS, Gamba G (2016) Potassium and its discontents: new insight, new treatments. J Am Soc Nephrol 27:981–989

    Article  PubMed  Google Scholar 

  47. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35:372–376

  48. O’Shaughnessy KM (2015) Gordon Syndrome: a continuing story. Pediatr Nephrol 30:1903–1908

    Article  PubMed  Google Scholar 

  49. Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbäumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Physiol 276:F367–F381

    CAS  PubMed  Google Scholar 

  50. Shekarabi M, Lafrenière RG, Gaudet R, Laganière J, Marcinkiewicz MM, Dion PA, Rouleau GA (2013) Comparative analysis of the expression profile of Wnk1 and Wnk1/Hsn2 splice variants in developing and adult mouse tissues. PLoS One 8:e57807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nako Y, Ohki Y, Harigaya A, Tomomasa T, Morikawa A (1999) Transtubular potassium concentration gradient in preterm neonates. Pediatr Nephrol 13:880–885

    Article  CAS  PubMed  Google Scholar 

  52. Satlin LM (1994) Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol 266:F57–F65

    CAS  PubMed  Google Scholar 

  53. Satlin LM, Palmer LG (1997) Apical K+ conductance in maturing rabbit principal cell. Am J Physiol 272:F397–F404

  54. Woda CB, Miyawaki N, Ramalakshmi S, Ramkumar M, Rojas R, Zavilowitz B, Kleyman TR, Satlin LM (2003) Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects. Am J Physiol 285:F629–F639

    CAS  Google Scholar 

  55. Delgado MM, Rohatgi R, Khan S, Holzman IR, Satlin LM (2003) Sodium and potassium clearances by the maturing kidney: Clinical-molecular correlates. Pediatr Nephrol 18:759–767

    Article  PubMed  Google Scholar 

  56. Hansen GP, Tisher CC, Robinson RR (1980) Response of the collecting duct to disturbances of acid-base and potassium balance. Kidney Int 17:326–337

    Article  CAS  PubMed  Google Scholar 

  57. Codina J, DuBose TD Jr (2006) Molecular regulation and physiology of the H+, K+-ATPases in kidney. Semin Nephrol 26:345–351

  58. Suarez-Rivera M, Bonilla-Felix M (2014) Fluid and electrolyte disorders in the newborn: sodium and potassium. Curr Pediatr Rev 10:115–122

    Article  CAS  PubMed  Google Scholar 

  59. Auron A, Auron-Gomez M, Raina R, Viswanathan S, Mhanna MJ (2009) Effect of amphotericin B lipid complex (ABLC) in very low birth weight infants. Pediatr Nephrol 24:295–299

    Article  PubMed  Google Scholar 

  60. Seyberth HW, Schlingmann KP (2011) Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 26:1789–1802

    Article  PubMed  PubMed Central  Google Scholar 

  61. Laghmani K, Beck BB, Yang SS, Seaayfan E, Wenzel A, Reusch B, Vitzthum H, Priem D, Demaretz S, Bergmann K, Duin LK, Göbel H, Mache C, Thiele H, Bartram MP, Dombret C, Altmüller J, Nürnberg P, Benzing T, Levtchenko E, Seyberth HW, Klaus G, Yigit G, Lin SH, Timmer A, de Koning TJ, Scherjon SA, Schlingmann KP, Bertrand MJ, Rinschen MM, de Backer O, Konrad M, Kömhoff M (2016) Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N Engl J Med 374:1853–1863

    Article  CAS  PubMed  Google Scholar 

  62. Tammaro F, Bettinelli A, Cattarelli D, Cavazza A, Colombo C, Syrén ML, Tedeschi S, Bianchetti MG (2010) Early appearance of hypokalemia in Gitelman syndrome. Pediatr Nephrol 25:2179–2182

    Article  PubMed  Google Scholar 

  63. Greco M, Brugnara M, Zaffanello M, Taranta A, Pastore A, Emma F (2010) Long-term outcome of nephropathic cystinosis: a 20-year single-center experience. Pediatr Nephrol 25:2459–2467

    Article  PubMed  Google Scholar 

  64. Vehaskari VM (2009) Heritable forms of hypertension. Pediatr Nephrol 24:1929–1937

    Article  PubMed  Google Scholar 

  65. Dluhy RGMD, Anderson B, Harlin B, Ingelfinger J, Lifton R (2001) Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr 138:715–720

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Soriano J, Ubetagoyena M, Vallo A (1990) Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol 4:105–110

    Article  CAS  PubMed  Google Scholar 

  67. Kamel KS, Halperin ML (2011) Intrarenal urea recycling leads to a higher rate of renal excretion of potassium: an hypothesis with clinical implications. Curr Opin Nephrol Hypertens 20:547–554

    Article  CAS  PubMed  Google Scholar 

  68. Huang CL, Kuo E (2007) Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18:2649–2652

    Article  PubMed  Google Scholar 

  69. Luke RG, Galla JH (2012) It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol 23:204–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Welfare W, Sasi P, English M (2002) Challenges in managing profound hypokalaemia. BMJ 324:269–270

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rodriguez-Soriano J (1995) Potassium homeostasis and its disturbances in children. Pediatr Nephrol 9:364–374

    Article  CAS  PubMed  Google Scholar 

  72. Chevalier RL (1998) What are normal potassium concentrations in the neonate? What is a reasonable approach to hyperkalemia in the newborn with normal renal function? Sem Nephrol 18:360–361

    CAS  Google Scholar 

  73. Ong YL, Deore R, El-Agnaf M (2010) Pseudohyperkalaemia is a common finding in myeloproliferative disorders that may lead to inappropriate management of patients. Int J Lab Hematol 32:151–157

    Article  Google Scholar 

  74. Lehnhardt A, Marcus J, Kemper MJ (2011) Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol 26:377–384

    Article  PubMed  Google Scholar 

  75. Perazella MA (2000) Trimethoprim-induced hyperkalaemia: clinical data, mechanism, prevention and management. Drug Saf 22:227–236

    Article  CAS  PubMed  Google Scholar 

  76. White PC (1997) Abnormalities of aldosterone synthesis and action in children. Curr Opin Pediatr 9:424–430

    Article  CAS  PubMed  Google Scholar 

  77. White PC (2004) Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol 217:81–87

    Article  CAS  PubMed  Google Scholar 

  78. Sudeep K, Rajpoot SK, Maggi C, Bhangoo A (2014) Pseudohypoaldosteronism in a neonate presenting as life-threatening arrhythmia. Endocrinol Diabetes Metab Case Rep 2014:130077

    Google Scholar 

  79. Gereda JE, Bonilla-Felix M, Kalil B, Dewitt SJ (1996) Neonatal presentation of Gordon syndrome. J Pediatr 129:615–617

    Article  CAS  PubMed  Google Scholar 

  80. Shortland D, Trounce JQ, Levene MI (1987) Hyperkalaemia, cardiac arrhythmias, and cerebral lesions in high risk neonates. Arch Dis Child 62:1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yaseen H (2009) Nonoliguric hyperkalemia in neonates: a case-controlled study. Am J Perinatol 26:185–189

    Article  PubMed  Google Scholar 

  82. Masilamani K, van der Voort J (2012) The management of acute hyperkalaemia in neonates and children. Arch Dis Child 97:376–380

    Article  PubMed  Google Scholar 

  83. Ditzenberger GR, Collins SD, Binder N (1999) Continuous insulin intravenous infusion therapy for VLBW infants. J Perinat Neonatal Nurs 13:70–82

    Article  CAS  PubMed  Google Scholar 

  84. Singh BS, Sadiq HF, Noguchi A, Keenan WJ (2002) Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr 141:16–20

    Article  CAS  PubMed  Google Scholar 

  85. Helfrich E, de Vries TW, van Roon EN (2001) Salbutamol for hyperkalaemia in children. Acta Paediatr 90:1213–1216

    Article  CAS  PubMed  Google Scholar 

  86. Yaseen H, Khalaf M, Dana A, Yaseen N, Darwich M (2008) Salbutamol versus cation-exchange resin (kayexalate) for the treatment of nonoliguric hyperkalemia in preterm infants. Am J Perinatol 25:193–197

    Article  PubMed  Google Scholar 

  87. Wigglesworth JS, Keith IH, Girling DJ, Slade SA (1976) Hyaline membrane disease, alkali, and intraventricular haemorrhage. Arch Dis Child 51:755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Papile LA, Burstein J, Burstein R, Koffier H, Koops B (1978) Relationship of intravenous sodium bicarbonate in fusions and cerebral intraventricular hemorrhage. J Pediatr 93:834–836

    Article  CAS  PubMed  Google Scholar 

  89. Szpecht D, Szymankiewicz M, Nowak I, Gadzinowski J (2016) Intraventricular hemorrhage in neonates born before 32 weeks of gestation-retrospective analysis of risk factors. Childs Nerv Syst 32:1399–1404

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vemgal P, Ohlsson A (2012) Interventions for non-oliguric hyperkalaemia in preterm neonates. Cochrane Database Syst Rev 5:CD005257

    Google Scholar 

  91. Ohlsson A, Hosking M (1987) Complications following oral administration of exchange resins in extremely low-birth-weight infants. Eur J Pediatr 146:571–574

    Article  CAS  PubMed  Google Scholar 

  92. Bennett LN, Myers TF, Lambert GH (1996) Cecal perforation associated with sodium polystyrene sulfonate-sorbitol enemas in a 650 grams infant with hyperkalemia. Am J Perinatol 13:167–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Bonilla-Félix.

Ethics declarations

Conflict of interest statement

None to declare

Additional information

Answers

1. d

2. c

3. d

4. b

5. e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonilla-Félix, M. Potassium regulation in the neonate. Pediatr Nephrol 32, 2037–2049 (2017). https://doi.org/10.1007/s00467-017-3635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3635-2

Keywords

Navigation