Skip to main content

Potassium Disorders: Evaluation and Management

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Potassium, the most abundant intracellular cation, plays a key role in vital cell functions. To ensure somatic growth, children maintain a positive potassium balance. Total body potassium content depends on both dietary intake and its excretion, primarily through the kidneys. The plasma concentration of potassium is a function of the total body potassium content and the internal potassium balance, determined by the relative distribution of potassium between the extracellular and intracellular fluid compartments. Insulin, catecholamines, and acid-base balance play a major role regulating the internal potassium balance. The renal handling of potassium is a complex process that involves filtration, reabsorption, and secretion. These processes are developmentally regulated; thus, the evaluation of children with disorders in potassium balance should always take into consideration the developmental stage of the patient. Hyperkalemia and hypokalemia are common and potentially life-threatening disorders. A careful history, including dietary intake, use of drugs with an effect on potassium metabolism, and evaluation of acid-base balance, is essential to establish an accurate diagnosis. In addition, identifying the cause requires a meticulous assessment of renal excretion of potassium, including estimation of GFR, evaluation of proximal tubular function, and the activity of mineralocorticoids in the distal nephron. The treatment should be aimed at correcting the primary cause, when possible. In symptomatic patients, the disturbances in plasma potassium concentration should be corrected promptly, with close monitoring of the electrocardiogram (ECG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McDonough AAYJ. Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiology. 2017;32(2):100–11.

    Google Scholar 

  2. Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol. 1998;274(5):F817–33.

    CAS  PubMed  Google Scholar 

  3. Holbrook JT, Patterson KY, Bodner JE. Sodium and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr. 1984;40(4):786–93.

    Article  CAS  PubMed  Google Scholar 

  4. Dørup I, Clausen T. Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart. Br J Nutr. 1991;66(3):493–504.

    Article  PubMed  Google Scholar 

  5. Satlin LM. Regulation of potassium transport in the maturing kidney. Semin Nephrol. 1999;19(2):155–65.

    CAS  PubMed  Google Scholar 

  6. DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med. 1979;90(3):310–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bia MJDR. Extrarenal potassium homeostasis. Am J Kidney Dis. 1981;240(4):f257–68.

    CAS  Google Scholar 

  8. Horster M. Embryonic epithelial membrane transporters. Am J Physiol. 2000;279(6):F982–96.

    Google Scholar 

  9. Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, et al. Developmental expression of sodium entry pathways in rat nephron. Am J Physiol. 1999;276(3):F367–81.

    Google Scholar 

  10. Brion LP, Schwartz GJ, Campbell D, Fleischman AR. Early hyperkalaemia in very low birthweight infants in the absence of oliguria. Arch Dis Child. 1989;64(2):270–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lorenz JM, Kleinman LI, Markarian K. Potassium metabolism in extremely low birth weight infants in the first of week life. J Pediatr. 1997;131(1 Pt I):81–6.

    Google Scholar 

  12. Sato K, Kondo T, Iwao H, Honda S, Ueda K. Internal potassium shift in premature infants: cause of nonoliguric hyperkalemia. J Pediatr. 1995;126(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  13. Shaffer SG, Kilbride HW, Hayen LK, Meade VM, Warady BA. Hyperkalemia in very low birth weight infants. J Pediatr. 1992;121(2):275–9.

    Article  CAS  PubMed  Google Scholar 

  14. Stefano JL, Norman ME, Morales MC, Goplerud JM, Mishra OP, Delivoria-Papadopoulos M. Decreased erythrocyte Na+, K+-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J Pediatr. 1993;122(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  15. Omar SA, DeCristofaro JD, Agarwal BI, LaGamma EF. Effect of prenatal steroids on potassium balance in extremely low birth weight neonates. Pediatrics. 2000;106(3):561–7.

    Article  CAS  PubMed  Google Scholar 

  16. Zierler KL, Rabinowitz D. Effect of very small concentrations of insulin on forearm metabolism. Persistence of its action on potassium and free fatty acids without its effect on glucose. J Clin Invest. 1964;43:950–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeFronzo RA, Sherwin RS, Dillingham M, Hendler R, Tamborlane WV, Felig P. Influence of basal insulin and glucagon secretion on potassium and sodium metabolism. Studies with somatostatin in normal dogs and in normal and diabetic human beings. J Clin Invest. 1978;61(2):472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiatt N, Davidson MB, Bonorris G. The effect of potassium chloride infusion on insulin secretion in vivo. Horm Metab Res Horm und Stoffwechselforschung Horm métabolisme. 1972;4(2):64–8.

    Article  CAS  Google Scholar 

  19. Pettit GW, Vick RL, Swander AM. Plasma K+ and insulin: changes during KCl infusion in normal and nephrectomized dogs. Am J Phys. 1975;228(1):107–9.

    Article  CAS  Google Scholar 

  20. DeFronzo RA, Bia M, Birkhead G. Epinephrine and potassium homeostasis. Kidney Int. 1981;20(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  21. Todd EP, Vick RL. Kalemotropic effect of epinephrine: analysis with adrenergic agonists and antagonists. Am J Phys. 1971;220(6):1964–9.

    Article  CAS  Google Scholar 

  22. Williams ME, Rosa RM, Silva P, Brown RS, Epstein FH. Impairment of Extrarenal potassium disposal by α-adrenergic stimulation. N Engl J Med. 1984;311(3):145–9.

    Article  CAS  PubMed  Google Scholar 

  23. Williams ME, Gervino EV, Rosa RM, Landsberg L, Young JB, Silva P, et al. Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med. 1985;312(13):823–7.

    Article  CAS  PubMed  Google Scholar 

  24. Rosa RM, Silva P, Young JB, Landsberg L, Brown RS, Rowe JW, et al. Adrenergic modulation of Extrarenal potassium disposal. N Engl J Med. 1980;302(8):431–4.

    Article  CAS  PubMed  Google Scholar 

  25. Angelopoulous M, Leitz H, Lambert G, MacGilvray S. In vitro analysis of the Na+-K+ ATPase activity in neonatal and adult red blood cells. Neonatology. 1996;69(3):140–5.

    Article  CAS  Google Scholar 

  26. Gillzan KM, Stewart AG. The role of potassium channels in the inhibitory effects of β2-adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle. Pulm Pharmacol Ther. 1997;10(2):71–9.

    Article  CAS  PubMed  Google Scholar 

  27. Clausen T, Flatman JA. The effect of catecholamines on Na—K transport and membrane potential in rat soleus muscle. J Physiol. 1977;270(2):383–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blumberg A, Weidmann P, Shaw S, Gnädinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  29. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83(4):1269–324.

    Google Scholar 

  30. Lei J, Mariash CN, Ingbar DH. 3,3′,5-Triiodo-L-thyronine up-regulation of Na,K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J Biol Chem. 2004;279(46):47589–600.

    Article  CAS  PubMed  Google Scholar 

  31. Lei J, Mariash CN, Bhargava M, Wattenberg EV, Ingbar DH. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L749–54.

    Google Scholar 

  32. Nakhoul F, Thompson CB, McDonough AA. Developmental change in Na,K-ATPase α1 and β1 expression in normal and hypothyroid rat renal cortex. Am J Nephrol. 2000;20(3):225–31.

    Article  CAS  PubMed  Google Scholar 

  33. Oster JR, Perez GO, Vaamonde CA. Relationship between blood pH and potassium and phosphorous during acute metabolic acidosis. Am J Physiol. 1978;4(4):F345–51.

    Google Scholar 

  34. Adrogué HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981;71(3):456–67.

    Article  PubMed  Google Scholar 

  35. Fulop M. Serum potassium in lactic acidosis and ketoacidosis. N Engl J Med. 1979;300(19):1087–9.

    Article  CAS  PubMed  Google Scholar 

  36. Graber M. A model of the hyperkalemia produced by metabolic acidosis. Am J Kidney Dis. 1993;22(3):436–44.

    Article  CAS  PubMed  Google Scholar 

  37. Fraley DS, Adler S. Correction of hyperkalemia by bicarbonate despite constant blood pH. Kidney Int. 1977;12(5):354–60.

    Article  CAS  PubMed  Google Scholar 

  38. Cooperman LH. Succinylcholine-induced hyperkalemia in neuromuscular disease. JAMA. 1970;213(11):1867–71.

    Article  CAS  PubMed  Google Scholar 

  39. Martyn JAJ, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158–69.

    Article  CAS  PubMed  Google Scholar 

  40. Hertz P, Richardson JA. Arginine-induced hyperkalemia in renal failure patients. Arch Intern Med. 1972;130(5):778–80.

    Article  CAS  PubMed  Google Scholar 

  41. Perazella MA, Biswas P. Acute hyperkalemia associated with intravenous epsilon-aminocaproic acid therapy. Am J Kidney Dis. 1999;33(4):782–5.

    Article  CAS  PubMed  Google Scholar 

  42. Ponce SP, Jennings AE, Madias NE, Harrington JT. Drug-induced hyperkalemia. Medicine. 1985;64(6):357–70.

    Article  CAS  PubMed  Google Scholar 

  43. Sulyok E, Nemeth M, Tenyi I, Csaba IF, Varga F, Györy E, et al. Relationship between maturity, electrolyte balance and the function of the renin-angiotensin-aldosterone system in newborn infants. Biol Neonate. 1979;35(1–2):60–5.

    Article  CAS  PubMed  Google Scholar 

  44. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int. 1981;20(6):700–4.

    Article  CAS  PubMed  Google Scholar 

  45. Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol. 2007;22(7):915–25.

    Article  PubMed  Google Scholar 

  46. Delgado MM, Rohatgi R, Khan S, Holzman IR, Satlin LM. Sodium and potassium clearances by the maturing kidney: clinical-molecular correlates. Pediatr Nephrol. 2003;18(8):759–67.

    Article  PubMed  Google Scholar 

  47. Tudvad F, McNamara H, Barnett HL. The renal response of premature infants to administration of bicarbonate and potassium. AMA Am J Dis Child. 1953;86(5):4–16.

    Google Scholar 

  48. Lelievre Pegorier M, Merlet Benichou C, Roinel N, De Rouffignac C. Developmental pattern of water and electrolyte transport in rat superficial nephrons. Am J Physiol. 1983;14(1):F15–21.

    Google Scholar 

  49. Kleinman LI, Banks RO. Segmental nephron sodium and potassium reabsorption in newborn and adult dogs during saline expansion. Proc Soc Exp Biol Med. 1983;173(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  50. Malnic G, Klose RM, Giebisch G. Micropuncture study of distal tubular potassium and sodium transfer in rat kidney. Am J Phys. 1966;211(3):529–47.

    Article  CAS  Google Scholar 

  51. Malnic G, Klose RM, Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Phys. 1966;211(3):548–59.

    Article  CAS  Google Scholar 

  52. Giebisch GH. A trail of research on potassium. Kidney Int. 2002;62(5):1498–512.

    Article  CAS  PubMed  Google Scholar 

  53. Solomon S. Absolute rates of sodium and potassium reabsorption by proximal tubule of immature rats. Neonatology. 1974;25(5–6):340–51.

    Article  CAS  Google Scholar 

  54. Bomsztyk K, Wright FS. Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol. 1986;250(4):F680–9.

    CAS  PubMed  Google Scholar 

  55. Kibble JD, Wareing M, Wilson RW, Green R. Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Physiol. 1995;268(4):F778–83.

    CAS  PubMed  Google Scholar 

  56. Weinstein AM. Modeling the proximal tubule: complications of the paracellular pathway. Am J Physiol. 1988;254(3):F297–305.

    CAS  PubMed  Google Scholar 

  57. Wilson RW, Wareing M, Green R. The role of active transport in potassium reabsorption in the proximal convoluted tubule of the anaesthetized rat. J Physiol. 1997;500(1):155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frömter E, Geßner K. Free-flow potential profile along rat kidney proximal tubule. Pflügers Arch Eur J Physiol. 1974;351(1):69–83.

    Article  Google Scholar 

  59. Edelman A, Curci S, Samaržija I, Frömter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflügers Arch Eur J Physiol. 1978;378(1):37–45.

    Article  CAS  Google Scholar 

  60. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, et al. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol. 1995;268(6)

    Google Scholar 

  61. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993;362(6415):31–8.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou H, Tate SS, Palmer LG. Primary structure and functional properties of an epithelial K channel. Am J Physiol. 1994;266(3):C809–24.

    Article  CAS  PubMed  Google Scholar 

  63. Igarashi P, Vanden-Heuvel GB, Payne JAFIB. Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-cl cotransporter. Am J Phys. 1995;269:F405–18.

    CAS  Google Scholar 

  64. Yasui M, Makples D, Belusa R, Eklöf AC, Celsi G, Nielsen S, et al. Development of urinary concentrating capacity: role of aquaporin-2. Am J Phys. 1996;271(2 Pt 2):F461–8.

    CAS  Google Scholar 

  65. Schmidt U, Horster M. Na-K-activated ATPase: activity maturation in rabbit nephron segments dissected in vitro. Am J Physiol. 1977;233(1):F55–60.

    CAS  PubMed  Google Scholar 

  66. Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Phys. 1964;206:674–86.

    Article  CAS  Google Scholar 

  67. Imai M, Nakamura R. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 1982;22(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  68. Satlin LM. Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol. 1994;266(1):F57–65.

    CAS  PubMed  Google Scholar 

  69. Schnermann J, Steipe B, Briggs JP. In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Physiol. 1987;252(6):F970–6.

    CAS  PubMed  Google Scholar 

  70. Frindt G, Palmer LG. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol. 2010;299(4):F890–7.

    CAS  Google Scholar 

  71. Su XT, Ellison DH, Wang WH. Kir4.1/kir5.1 in the DCT plays a role in the regulation of renal K+ excretion. Am J Physiol. 2019;316(3):F582–6.

    CAS  Google Scholar 

  72. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. Expression and phosphorylation of the Na+-cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol. 2009;297(3):F704–12.

    CAS  Google Scholar 

  73. Huang CL, Kuo E. Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension. Nat Clin Pract Nephrol. 2007;3(11):623–30.

    Article  CAS  PubMed  Google Scholar 

  74. Constantinescu A, Silver RB, Satlin LM. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct. Am J Physiol. 1997;272(2):F167–77.

    CAS  PubMed  Google Scholar 

  75. Satlin LM, Matsumoto T, Schwartz GJ. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin- binding intercalated cells. Am J Physiol. 1992;262(2):F199–208.

    CAS  PubMed  Google Scholar 

  76. Velazquez H, Ellison DH, Wright FS. Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Physiol. 1987;253(3):F555–62.

    CAS  PubMed  Google Scholar 

  77. Wingo CS. Reversible chloride-dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol. 1989;256(4):F697–704.

    CAS  PubMed  Google Scholar 

  78. Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol. 2004;287(5):F1030–7.

    CAS  Google Scholar 

  79. Frindt G, Palmer LG. Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol. 1989;256(1):F143–51.

    CAS  PubMed  Google Scholar 

  80. Wang W, Schwab A, Giebisch G. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol. 1990;259(3):F494–502.

    CAS  PubMed  Google Scholar 

  81. Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277(40):37881–7.

    Article  CAS  PubMed  Google Scholar 

  82. Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, et al. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight. 2020;5(8)

    Google Scholar 

  83. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol. 2001;280(5):F786–93.

    CAS  Google Scholar 

  84. Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol. 1991;261(4):F696–705.

    CAS  PubMed  Google Scholar 

  85. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol. 2003;285(5):F998–1012.

    CAS  Google Scholar 

  86. Taniguchi J, Takeda M, Yoshitomi K, Imai M. Pressure- and parathyroid-hormone-dependent Ca2+ transport in rabbit connecting tubule: role of the stretch-activated nonselective cation channel. J Membr Biol. 1994;140(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  87. Palmer LG, Frindt G. High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol. 2007;292(3):F966–73.

    CAS  Google Scholar 

  88. Pluznick JL, Wei P, Carmines PK, Sansom SC. Renal fluid and electrolyte handling in BKCa-β1−/− mice. Am J Physiol. 2003;284(6):F1274–9.

    CAS  Google Scholar 

  89. Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P, et al. The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int. 2007;72(5):566–73.

    Article  CAS  PubMed  Google Scholar 

  90. Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol. 2008;70:329–55.

    Article  CAS  PubMed  Google Scholar 

  91. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011;22(4):605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7(324)

    Google Scholar 

  93. Buffin-Meyer B, Younes-Ibrahim M, Barlet-Bas C, Cheval L, Marsy S, Doucet A. K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Phys. 1997;272(1 Pt 2):F124–31.

    CAS  Google Scholar 

  94. Codina J, DuBose TD. Molecular regulation and physiology of the H+,K+-ATPases in kidney. Semin Nephrol. 2006;26(5):345–51.

    Article  CAS  PubMed  Google Scholar 

  95. Zhou X, Nakamura S, Xia SL, Wingo CS. Increased CO2 stimulates K/Rb reabsorption mediated by H-K-ATPase in CCD of potassium-restricted rabbit. Am J Physiol. 2001;281(2):F366–73.

    CAS  Google Scholar 

  96. Ahn KY, Turner PB, Madsen KM, Kone BC. Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase α-subunit gene. Am J Phys. 1996;270(4 Pt 2):F551–66.

    Google Scholar 

  97. Silver RB, Mennitt PA, Satlin LM. Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Phys. 1996;270(3 Pt 2):F539–47.

    CAS  Google Scholar 

  98. Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol. 1999;277(5):F805–12.

    CAS  PubMed  Google Scholar 

  99. Wang W, Lerea KM, Chan M, Giebisch G. Protein tyrosine kinase regulates the number of renal secretory K channels. Am J Physiol. 2000;278(1):F165–71.

    CAS  Google Scholar 

  100. Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, et al. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol. 2005;289(4):F922–32.

    CAS  Google Scholar 

  101. Silver RB, Soleimani M. H+ -K+ -ATPases: regulation and role in pathophysiological states. Am J Physiol. 1996;276(6):F799–811.

    Google Scholar 

  102. Satlin LM, Palmer LG. Apical K+ conductance in maturing rabbit principal cell. Am J Physiol. 1997;272(3):F397–404.

    CAS  PubMed  Google Scholar 

  103. Morita H, Fujiki N, Miyahara T, Lee K, Tanaka K. Hepatoportal bumetanide-sensitive K+-sensor mechanism controls urinary K+ excretion. Am J Physiol. 2000;278(5):R1134–9.

    CAS  Google Scholar 

  104. Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H. Effect of high-NaCl or high-KCl diet on hepatic Na+− and K +-receptor sensitivity and NKCC1 expression in rats. Am J Physiol. 2004;286(3):R591–6.

    CAS  Google Scholar 

  105. Chen P, Guzman JP, Leong PKK, Yang LE, Perianayagam A, Babilonia E, et al. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K + channel without fall in plasma K+ concentration. Am J Physiol. 2006;290(5):C1355–63.

    Article  CAS  Google Scholar 

  106. Engbretson BG, Stoner LC. Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol. 1987;253(5):F896–903.

    CAS  PubMed  Google Scholar 

  107. Schwartz GJ, Burg MB. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Phys. 1978;235(6):f576–85.

    CAS  Google Scholar 

  108. Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol. 1994;104(4):693–710.

    Article  CAS  PubMed  Google Scholar 

  109. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone, mediated regulation of ENaC α, β, and γ subunit proteins in rat kidney. J Clin Invest. 1999;104(7):R19–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Neil RG, Hayhurst RA. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol. 1985;85(2):169–79.

    Article  PubMed  Google Scholar 

  111. PáCha J, Frindt G, Antonian L, Silver RB, Palmer LG. Regulation of na channels of the rat cortical collecting tubule by aldosterone. J Gen Physiol. 1993;102(1):25–42.

    Article  PubMed  Google Scholar 

  112. Summa V, Mordasini D, Roger F, Bens M, Martin PY, Vandewalle A, et al. Short term effect of aldosterone on Na,K-ATPase cell surface expression in kidney collecting duct cells. J Biol Chem. 2001;276(50):47087–93.

    Article  CAS  PubMed  Google Scholar 

  113. Ikeda U, Hyman R, Smith TW, Medford RM. Aldosterone-mediated regulation of Na+,K+-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem. 1991;266(18):12058–66.

    Article  CAS  PubMed  Google Scholar 

  114. Van Acker KJ, Scharpe SL, Deprettere AJR, Neels HM. Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int. 1979;16(2):196–203.

    Article  PubMed  Google Scholar 

  115. Stephenson G, Hammet M, Hadaway G, Funder JW. Ontogeny of renal mineralocorticoid receptors and urinary electrolyte responses in the rat. Am J Physiol. 1984;16(4).

    Google Scholar 

  116. Aperia A, Broeberger O, Herin P, Zetterström R. Sodium excretion in relation to sodium intake and aldosterone excretion in newborn pre-term and full-term infants. Acta Paediatr. 1979;68(6):813–7.

    Article  CAS  Google Scholar 

  117. Robillard JE, Nakamura KT, Lawton WJ, Smith B, McWeeny O, Wear S. Effects of aldosterone on urinary kallikrein and sodium excretion during fetal life. Pediatr Res. 1985;19(10):1048–52.

    Article  CAS  PubMed  Google Scholar 

  118. Moore-Ede MC, Meguid MM, Fitzpatrick GF, Boyden CM, Ball MR. Circadian variation in response to potassium infusion. Clin Pharmacol Ther. 1978;23(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  119. Moore Ede MC, Herd JA. Renal electrolyte circadian rhythms: independence from feeding and activity patterns. Am J Phys. 1977;232(2):F128–35.

    CAS  Google Scholar 

  120. Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, et al. The circadian clock protein period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest. 2009;119(8):2423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zubera AM, Centenoa G, Pradervandb S, Nikolaevaa S, Maquelina L, Cardinauxa L, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A. 2009;106(38):16523–8.

    Article  Google Scholar 

  122. Rakova N, Jüttner K, Dahlmann A, Schröder A, Linz P, Kopp C, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metab. 2013;17(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  123. Aizman RI, Celsi G, Grahnquist L, Wang ZM, Finkel Y, Aperia A. Ontogeny of K+ transport in rat distal colon. Am J Physiol. 1996;271(2):g268–74.

    CAS  PubMed  Google Scholar 

  124. Foster ES, Hayslett JP, Binder HJ. Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol. 1984;9(5):g611–7.

    Google Scholar 

  125. Dawson DC. Ion channels and colonic salt transport. Annu Rev Physiol. 1991;53:321–39.

    Article  CAS  PubMed  Google Scholar 

  126. Butterfield I, Warhurst G, Jones MN, Sandle GI. Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J Physiol. 1997;501(3):537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pácha J, Popp M, Capek K. Corticosteroid regulation of Na+ and K+ transport in the rat distal colon during postnatal development. J Dev Physiol. 1988;10(6):531–40.

    PubMed  Google Scholar 

  128. Warth RBM. K+ channels and colonic function. Rev Physiol Biochem Pharmacol. 2000;140:1–62.

    Article  CAS  PubMed  Google Scholar 

  129. Sausbier M, Matos JE, Sausbier U, Beranek G, Arntz C, Neuhuber W, et al. Distal colonic K+ secretion occurs via BK channels. J Am Soc Nephrol. 2006;17(5):1275–82.

    Article  CAS  PubMed  Google Scholar 

  130. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002;82(1):245–89.

    Article  CAS  PubMed  Google Scholar 

  131. Rechkemmer G, Frizzell RA, Halm DR. Active potassium transport across Guinea-pig distal colon: action of secretagogues. J Physiol. 1996;493(2):485–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Binder HJ, McGlone F, Sandle GI. Effects of corticosteroid hormones on the electrophysiology of rat distal colon: implications for Na+ and K+ transport. J Physiol. 1989;410(1):425–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Agarwal R, Afzalpurkar R, Fordtran JS. Pathophysiology of potassium absorption and secretion by the human intestine. Gastroenterology. 1994;107(2):548–71.

    Article  CAS  PubMed  Google Scholar 

  134. Hayes CP Jr, McLeod MERR. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans Assoc Am Phys. 1967;80(207–16).

    Google Scholar 

  135. Sandle GI, Gaiger E, Tapster S, Goodship THJ. Enhanced rectal potassium secretion in chronic renal insufficiency: evidence for large intestinal potassium adaptation in man. Clin Sci. 1986;71(4):393–401.

    Article  CAS  Google Scholar 

  136. Sandle GI, Gaiger E, Tapster S, Goodship THJ. Evidence for large intestinal control of potassium hemoeostasis in uraemic patients undergoing long-term dialysis. Clin Sci. 1987;73(3):247–52.

    Article  CAS  Google Scholar 

  137. Mathialahan T, Maclennan KA, Sandle LN, Verbeke C, Sandle GI. Enhanced large intestinal potassium permeability in end-stage renal disease. J Pathol. 2005;206(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  138. Aizman R, Grahnquist LCG. Potassium homeostasis: ontogenic aspects. Acta Paediatr. 1998;87:609–17.

    Article  CAS  PubMed  Google Scholar 

  139. Aizman R, Aizman O, Celsi G. β-Adrenergic stimulation of cellular K+ uptake in rat distal colon. Acta Physiol Scand. 1998;164(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  140. Saxena K. Clinical features and management of poisoning due to potassium chloride. Med Toxicol Adverse Drug Exp. 1989;4(6):429–43.

    Article  CAS  PubMed  Google Scholar 

  141. West ML, Marsden PA, Richardson RMA, Zettle RM, Halperin ML. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab. 1986;12(4):234–8.

    CAS  PubMed  Google Scholar 

  142. West ML, Bendz O, Chen CB, Singer GG, Richardson RM, Sonnenberg H, et al. Development of a test to evaluate the transtubular potassium concentration gradient in the cortical collecting duct in vivo. Miner Electrolyte Metab. 1986;12(4):226–33.

    CAS  PubMed  Google Scholar 

  143. Field MJ, Giebisch GJ. Hormonal control of renal potassium excretion. Kidney Int. 1985;27(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  144. Rodríguez-Soriano J, Ubetagoyena M, Vallo A. Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol. 1990;4(2):105–10.

    Article  PubMed  Google Scholar 

  145. Nako Y, Ohki Y, Harigaya A, Tomomasa T, Morikawa A. Transtubular potassium concentration gradient in preterm neonates. Pediatr Nephrol. 1999;13(9):880–5.

    Article  CAS  PubMed  Google Scholar 

  146. Chevalier RL. What are normal potassium concentrations in the neohate? What is a reasonable approach to hyperkalemia in the newborn with normal renal function? Semin Nephrol. 1998;18(3):360–1.

    CAS  PubMed  Google Scholar 

  147. Lehnhardt A, Kemper MJ. Pathogenesis, diagnosis and management of hyperkalemia. Pediatr Nephrol. 2011;26(3):377–84.

    Article  PubMed  Google Scholar 

  148. Perazella MA. Trimetropin – induced hyperkaelemia: clinical data, mechanism, prevention and management. Drug Saf. 2000;22(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  149. White PC. Abnormalities of aldosterone synthesis and action in children. Curr Opin Pediatr. 1997;9(4):424–30.

    Article  CAS  PubMed  Google Scholar 

  150. White PC. Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol. 2004;217(1–2):81–7.

    Article  CAS  PubMed  Google Scholar 

  151. Rajpoot SK, Maggi C, Bhangoo A. Pseudohypoaldosteronism in a neonate presenting as life-threatening arrhythmia. Vol. 2014, Endocrinology, Diabetes & Metabolism Case Reports. 2014. p. 130077.

    Google Scholar 

  152. Gereda JE, Bonilla-Felix M, Kalil B, Dewitt SJ. Neonatal presentation of Gordon syndrome. J Pediatr. 1996;129(4):615–7.

    Article  CAS  PubMed  Google Scholar 

  153. Masilamani K, Van Der Voort J. The management of acute hyperkalaemia in neonates and children. Arch Dis Child. 2012;97(4):376–80.

    Article  PubMed  Google Scholar 

  154. Shortland D, Trounce JQ, Levene MI. Hyperkalaemia, cardiac arrhythmias, and cerebral lesions in high risk neonates. Arch Dis Child. 1987;62(11):1139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yeh TF, Raval D, John E, Spildes R. Renal response to furosemide in preterm infants with respiratory distress syndrome during the first three postnatal days. Arch Dis Child. 1985;60(7):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lui K, Thungappa U, Nair A, John E. Treatment with hypertonic dextrose and insulin in severe hyperkalaemia of immature infants. Acta Paediatr. 1992;81(3):213–6.

    Article  CAS  PubMed  Google Scholar 

  157. Ditzenberger GR, Collins SD, Binder N. Continuous insulin intravenous infusion therapy for VLBW infants. J Perinat Neonatal Nurs. 1999;13(3):70–82.

    Article  CAS  PubMed  Google Scholar 

  158. Mandelberg A, Krupnik Z, Houri S, Smetana S, Gilad E, Matas Z, et al. Salbutamol metered-dose inhaler with spacer for hyperkalemia: how fast? How safe? Chest. 1999;115(3):617–22.

    Article  CAS  PubMed  Google Scholar 

  159. Singh BS, Sadiq HF, Noguchi A, Keenan WJ. Efficacy of albuterol inhalation in treatment of hyperkalemia in premature neonates. J Pediatr. 2002;141(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  160. Helfrich E, De Vries TW, Van Roon EN. Salbutamol for hyperkalaemia in children. Acta Paediatr Int J Paediatr. 2001;90(11):1213–6.

    Article  CAS  Google Scholar 

  161. Allon M. Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol. 1995;6(4):1134–42.

    Article  CAS  PubMed  Google Scholar 

  162. McClure RJ, Prasad VK, Brocklebank JT. Treatment of hyperkalaemia using intravenous and nebulised salbutamol. Arch Dis Child. 1994;70(2):126–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wigglesworth JS, Keith IH, Girling DJ, Slade SA. Hyaline membrane disease, alkali, and intraventricular haemorrhage. Arch Dis Child. 1976;51(10):755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Papile L, Burstein J, Burstein R, Koffler H, Koops B. Relationship of intravenous sodium bicarbonate infusions and cerebral intraventricular hemorrhage. Obstet Gynecol Surv. 1979;34(7):512.

    Article  Google Scholar 

  165. Vemgal P, Ohlsson A. Interventions for non-oliguric hyperkalaemia in preterm neonates. Cochrane Database Syst Rev. 2007;5(1).

    Google Scholar 

  166. Ohlsson A, Hosking M. Complications following oral administration of exchange resins in extremely low-birth-weight infants. Eur J Pediatr. 1987;146(6):571–4.

    Article  CAS  PubMed  Google Scholar 

  167. Meaney CJ, Beccari MV, Yang Y, Zhao J. Systematic review and meta-analysis of Patiromer and sodium zirconium Cyclosilicate: a new armamentarium for the treatment of hyperkalemia. Pharmacotherapy. 2017;37(4):401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Suarez-Rivera M, Bonilla-Felix M. Fluid and electrolyte disorders in the newborn: sodium and potassium. Curr Pediatr Rev. 2014;10(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  169. Dellow EL, Unwin RJ, Honour JW. Pontefract cakes can be bad for you: refractory hypertension and liquorice excess. Nephrol Dial Transplant. 1999;14(1):218–20.

    Article  CAS  PubMed  Google Scholar 

  170. Auron A, Auron-Gomez M, Raina R, Viswanathan S, Mhanna MJ. Effect of amphotericin B lipid complex (ABLC) in very low birth weight infants. Pediatr Nephrol. 2009;24(2):295–9.

    Article  PubMed  Google Scholar 

  171. Tammaro F, Bettinelli A, Cattarelli D, Cavazza A, Colombo C, Syrén ML, et al. Early appearance of hypokalemia in Gitelman syndrome. Pediatr Nephrol. 2010;25(10):2179–82.

    Article  PubMed  Google Scholar 

  172. Vehaskari VM. Heritable forms of hypertension. Pediatr Nephrol. 2009;24(10):1929–37.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R. Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr. 2001;138(5):715–20.

    Article  CAS  PubMed  Google Scholar 

  174. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23(2):204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Welfare W, Sasi P, English M. Challenges in managing profound hypokalaemia. Br Med J. 2002;324(7332):269–70.

    Article  Google Scholar 

  176. Rodríguez-Soriano J. Potassium homeostasis and its disturbances in children. Pediatr Nephrol. 1995;9(3):364–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Bonilla-Félix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suárez-Rivera, M., Satlin, L.M., Bonilla-Félix, M. (2022). Potassium Disorders: Evaluation and Management. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_114

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics