Skip to main content

Advertisement

Log in

Increased urinary neutrophil gelatinase-associated lipocalin in very-low-birth-weight infants with oliguria and normal serum creatinine

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

In infants, oliguria is defined as a urine output of <1.5 mL/kg/h. The aim of our study was to assess the impact of oliguria on urinary neutrophil gelatinase-associated lipocalin (NGAL) and serum cystatin C (CysC) levels in very-low-birth-weight infants (VLBWIs) with a normal serum creatinine (Cr) level.

Methods

Fifty-seven VLBWIs were enrolled in the study. Urinary NGAL, serum CysC and Cr levels and urinary NGAL/Cr ratios were measured. Infants with Apgar scores of >5 at 5 min and/or a serum Cr level of >1.5 mg/dL or those treated for patent ductus arteriosus were excluded. In case of antibiotic treatment, blood and urine samples were collected at ≥48 h after discontinuation of antibiotic treatment.

Results

There was a significant difference in gestational age between infants with oliguric episodes during hospitalization and those without, but not in birth weight, perinatal or postnatal factors. Gestational age was negatively correlated with urinary NGAL and serum CysC levels and urinary NGAL/Cr ratio (p < 0.05), whereas postnatal age was negatively correlated with serum Cr level and urinary NGAL/Cr ratio (p < 0.05). Of the 117 urine and blood samples collected, 25 (21.4%) were obtained from neonates with oliguric episodes. After adjusting for gestational age and postnatal age, comparison of samples collected in infants with and without oliguric episodes revealed significant differences in the mean level of urinary NGAL and in the urinary NGAL/Cr ratio, but not in mean serum CysC or serum Cr levels. The urinary NGAL level [area under the curve (AUC) 0.886, 95% confidence interval (CI) 0.814–0.937] and urinary NGAL/Cr ratio (AUC 0.853, 95% CI 0.775–0.911) showed significantly greater discrimination for oliguria than serum CysC (AUC 0.610, 95% CI: 0.515–0.699) or serum Cr (AUC 0.747, 95%CI 0.659–0.823) levels.

Conclusions

Urinary NGAL level and urinary NGAL/Cr ratio were more sensitive markers for the presence of oliguria in VLBWIs with normal serum Cr levels than serum CysC level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liborio AB, Branco KM, Torres de Melo Bezerra C (2014) Acute kidney injury in neonates: from urine output to new biomarkers. Biomed Res Int 2014:601568

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vanpee M, Blennow M, Linne T, Herin P, Aperia A (1992) Renal function in very low birth weight infants: normal maturity reached during early childhood. J Pediatr 121:784–788

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25

    Article  PubMed  Google Scholar 

  4. Askenazi DJ, Griffin R, McGwin G, Carlo W, Ambalavanan N (2009) Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case–control analysis. Pediatr Nephrol 24:991–997

    Article  PubMed  Google Scholar 

  5. Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D (2011) Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res 69:354–358

    Article  PubMed  Google Scholar 

  6. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035

    Article  CAS  PubMed  Google Scholar 

  7. Ricci Z, Ronco C (2013) Neonatal RIFLE. Nephrol Dial Transplant 28:2211–2214

    Article  PubMed  Google Scholar 

  8. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Acute Kidney Injury Network (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prowle JR, Liu YL, Licari E, Bagshaw SM, Egi M, Haase M, Haase-Fielitz A, Kellum JA, Cruz D, Ronco C, Tsutsui K, Uchino S, Bellomo R (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15:R172

    Article  PubMed  PubMed Central  Google Scholar 

  10. Askenazi DJ, Ambalavanan N, Goldstein SL (2009) Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol 24:265–274

    Article  PubMed  Google Scholar 

  11. Jetton JG, Askenazi DJ (2012) Update on acute kidney injury in the neonate. Curr Opin Pediatr 24:191–196

    Article  CAS  PubMed  Google Scholar 

  12. Bezerra CT, Vaz Cunha LC, Liborio AB (2013) Defining reduced urine output in neonatal ICU: importance for mortality and acute kidney injury classification. Nephrol Dial Transplant 28:901–909

    Article  PubMed  Google Scholar 

  13. Feldman H, Guignard JP (1982) Plasma creatinine in the first month of life. Arch Dis Child 57:123–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G (2000) Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol 15:119–124

    Article  CAS  PubMed  Google Scholar 

  15. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  CAS  PubMed  Google Scholar 

  17. Kim H, Hur M, Cruz DN, Moon HW, Yun YM (2013) Plasma neutrophil gelatinase-associated lipocalin as a biomarker for acute kidney injury in critically ill patients with suspected sepsis. Clin Biochem 46:1414–1418

    Article  CAS  PubMed  Google Scholar 

  18. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  CAS  PubMed  Google Scholar 

  19. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huynh TK, Bateman DA, Parravicini E, Lorenz JM, Nemerofsky SL, Sise ME, Bowman TM, Polesana E, Barasch JM (2009) Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr Res 66:528–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, Schibler KR (2008) Urinary NGAL in premature infants. Pediatr Res 64:423–428

    Article  CAS  PubMed  Google Scholar 

  22. Rybi-Szuminska A, Wasilewska A, Litwin M, Kulaga Z, Szuminski M (2013) Paediatric normative data for urine NGAL/creatinine ratio. Acta Paediatr 102:e269–e272

    Article  PubMed  Google Scholar 

  23. Zwiers AJ, de Wildt SN, de Rijke YB, Willemsen SP, Abdullahi NS, Tibboel D, Cransberg K (2015) Reference intervals for renal injury biomarkers neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in young infants. Clin Chem Lab Med 53:1279–1289

    Article  CAS  PubMed  Google Scholar 

  24. Nishida M, Kawakatsu H, Okumura Y, Hamaoka K (2010) Serum and urinary neutrophil gelatinase-associated lipocalin levels in children with chronic renal diseases. Pediatr Int 52:563–568

    Article  CAS  PubMed  Google Scholar 

  25. Devarajan P (2014) NGAL for the detection of acute kidney injury in the emergency room. Biomark Med 8:217–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Waikar SS, Sabbisetti VS, Bonventre JV (2010) Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 78:486–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Westhuyzen J (2006) Cystatin C: a promising marker and predictor of impaired renal function. Ann Clin Lab Sci 36:387–394

    CAS  PubMed  Google Scholar 

  28. Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509

    Article  CAS  PubMed  Google Scholar 

  29. Demirel G, Celik IH, Canpolat FE, Erdeve O, Biyikli Z, Dilmen U (2013) Reference values of serum cystatin C in very low-birthweight premature infants. Acta Paediatr 102:e4–e7

    Article  CAS  PubMed  Google Scholar 

  30. Elmas AT, Tabel Y, Elmas ON (2013) Reference intervals of serum cystatin C for determining cystatin C-based glomerular filtration rates in preterm neonates. J Matern Fetal Neonatal Med 26:1474–1478

    Article  CAS  PubMed  Google Scholar 

  31. Bokenkamp A, Dieterich C, Dressler F, Mühlhaus K, Gembruch U, Bald R, Kirschstein M (2001) Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am J Obstet Gynecol 185:468–475

    Article  CAS  PubMed  Google Scholar 

  32. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164:1026–1031.e2

    Article  PubMed  Google Scholar 

  33. Selewski DT, Charlton JR, Jetton JG, Guillet R, Mhanna MJ, Askenazi DJ, Kent AL (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473

    Article  PubMed  Google Scholar 

  34. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729

    Article  CAS  PubMed  Google Scholar 

  35. Cataldi L, Leone R, Moretti U, De Mitri B, Fanos V, Ruggeri L, Sabatino G, Torcasio F, Zanardo V, Attardo G, Riccobene F, Martano C, Benini D, Cuzzolin L (2005) Potential risk factors for the development of acute renal failure in preterm newborn infants: a case–control study. Arch Dis Child Fetal Neonatal Ed 90:F514–F519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stojanovic V, Barisic N, Milanovic B, Doronjski A (2014) Acute kidney injury in preterm infants admitted to a neonatal intensive care unit. Pediatr Nephrol 29:2213–2220

    Article  PubMed  Google Scholar 

  37. Fanos V, Antonucci R, Zaffanello M (2010) Ibuprofen and acute kidney injury in the newborn. Turk J Pediatr 52:231–238

    PubMed  Google Scholar 

  38. Rhone ET, Carmody JB, Swanson JR, Charlton JR (2014) Nephrotoxic medication exposure in very low birth weight infants. J Matern Fetal Neonatal Med 27:1485–1490

    Article  CAS  PubMed  Google Scholar 

  39. Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, Mehta RL, Ambalavanan N (2011) Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr Res 70:302–306

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parravicini E, Lorenz JM, Nemerofsky SL, O’Rourke M, Barasch J, Bateman D (2009) Reference range of urinary neutrophil gelatinase-associated lipocalin in very low-birth-weight infants: preliminary data. Am J Perinatol 26:437–440

    Article  PubMed  Google Scholar 

  41. Lee JH, Hahn WH, Ahn J, Chang JY, Bae CW (2013) Serum cystatin C during 30 postnatal days is dependent on the postconceptional age in neonates. Pediatr Nephrol 28:1073–1078

    Article  PubMed  Google Scholar 

  42. Cho SY, Hahn WH, Lee HJ, Suh JT, Lee A, Cho BS, Suh JS (2012) The clinical significance of serum cystatin C in critically ill newborns with normal serum creatinine. J Clin Lab Anal 26:267–271

    Article  CAS  PubMed  Google Scholar 

  43. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, Ambalavanan N (2012) Urine biomarkers predict acute kidney injury in newborns. J Pediatr 161:270–275.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanna M, Brophy PD, Giannone PJ, Joshi MS, Bauer JA, RamachandraRao S (2016) Early urinary biomarkers of acute kidney injury in preterm infants. Pediatr Res 80:218–213

    Article  CAS  PubMed  Google Scholar 

  45. La Manna G, Galletti S, Capelli I, Vandini S, Nisi K, Aquilano G, Mancini R, Carretta E, Montini G, Faldella G, Stefoni S (2011) Urinary neutrophil gelatinase-associated lipocalin at birth predicts early renal function in very low birth weight infants. Pediatr Res 70:379–383

    Article  PubMed  Google Scholar 

  46. Hoffman SB, Massaro AN, Soler-Garcia AA, Perazzo S, Ray PE (2013) A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study. Pediatr Nephrol 28:2179–2188

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hyun Park.

Ethics declarations

Financial Disclosure

This research was supported by a Bisa Research Grant of Keimyung University in 2015.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Ethical compliance

Data collection was approved by the Institutional Review Board of Keimyung University Dongsan Medical Center. The IRB waived the requirement for informed consent in this retrospective chart review.

Additional information

So Young Shin and Ji Yong Ha contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.Y., Ha, J.Y., Lee, S.L. et al. Increased urinary neutrophil gelatinase-associated lipocalin in very-low-birth-weight infants with oliguria and normal serum creatinine. Pediatr Nephrol 32, 1059–1065 (2017). https://doi.org/10.1007/s00467-016-3572-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3572-5

Keywords

Navigation