Skip to main content
Log in

Renal function and systolic blood pressure in very-low-birth-weight infants 1–3 years of age

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Preterm very-low-birth-weight (PT-VLBW) infants are at risk of an elevated systolic blood pressure (SBP) in infancy and adulthood; however, the pathogenesis remains unclear. Altered renal development or function may be associated with increased SBP, but their contribution in PT-VLBW is unknown.

Methods

We determined renal function and its relationship to SBP in three groups of PT-VLBW at 1, 2, and 3 years of age, using serum cystatin-C to calculate the estimated glomerular filtration rate (eGFR).

Results

Cystatin-C levels decreased from 0.84 ± 0.2 (SD) within the 1-year group to 0.70 ± 0.1 mg/l (±SD; P < 0.001) at 3 years and were unrelated to gender, fetal growth, and neonatal indomethacin exposure. eGFR rose from 121 ± 59 in the 1-year group to 138 ± 21 ml/min·1.73 m2 (P < 0.001) at 3 years. At 1 year, cystatin-C levels decreased with increasing SBP (P < 0.007), and infants with SBP ≥ 90th% had lower cystatin-C and higher eGFR (P < 0.05). At 3 years, infants with lower birth weight (P < 0.03) and gestational age (P = 0.06) had reduced eGFR.

Conclusions

Preterm very-low-birth-weight infants demonstrate increasing renal function with advancing age. An elevated SBP and eGFR at 1 year suggests dysfunctional renal autoregulation and hyperfiltration, which may alter subsequent renal function and contribute to the lower eGFR seen at 3 years in infants with the lowest birth weight and gestational age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298:564–567

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ, Bagby SP, Hanson MA (2006) Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2:700–707

    Article  PubMed  Google Scholar 

  3. Barker DJ, Osmond C, Kajantie E, Eriksson JG (2009) Growth and chronic disease: findings in the Helsinki Birth Cohort. Ann Hum Biol 36:445–458

    Article  PubMed  Google Scholar 

  4. Barker DJ (2004) Developmental origins of adult health and disease. J Epidemiol Community Health 58:114–115

    Article  PubMed  CAS  Google Scholar 

  5. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  PubMed  CAS  Google Scholar 

  6. Huxley RR, Shiell AW, Law CM (2000) The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 18:815–831

    Article  PubMed  CAS  Google Scholar 

  7. Siewert-Delle A, Ljungman S (1998) The impact of birth weight and gestational age on blood pressure in adult life: a population-based study of 49-year-old men. Am J Hypertens 11:946–953

    Article  PubMed  CAS  Google Scholar 

  8. Johansson S, Iliadou A, Bergvall N, Tuvemo T, Norman M, Cnattingius S (2005) Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation 112:3430–3436

    Article  PubMed  Google Scholar 

  9. Pharoah PO, Stevenson CJ, West CR (1998) Association of blood pressure in adolescence with birthweight. Arch Dis Child Fetal Neonatal Ed 79:F114–F118

    Article  PubMed  CAS  Google Scholar 

  10. Hack M, Schluchter M, Cartar L, Rahman M (2005) Blood pressure among very low birth weight (< 1.5 kg) young adults. Pediatr Res 58:677–684

    Article  PubMed  Google Scholar 

  11. Hovi P, Andersson S, Raikkonen K, Strang-Karlsson S, Jarvenpaa AL, Eriksson JG, Pesonen AK, Heinonen K, Pyhala R, Kajantie E (2010) Ambulatory blood pressure in young adults with very low birth weight. J Pediatr 156(54–59):e51

    Google Scholar 

  12. Vohr BR, Allan W, Katz KH, Schneider KC, Ment LR (2010) Early predictors of hypertension in prematurely born adolescents. Acta Paediatr 99:1812–1818

    Article  PubMed  Google Scholar 

  13. Duncan AF, Rosenfeld CR, Morgan JS, Ahmad N, Heyne RJ (2008) Interrater reliability and effect of state on blood pressure measurements in infants 1 to 3 years of age. Pediatrics 122:e590–e594

    Article  PubMed  Google Scholar 

  14. Duncan AF, Heyne RJ, Morgan JS, Ahmad N, Rosenfeld CR (2011) Elevated systolic blood pressure in preterm very-low-birth-weight infants ≤ 3 years of life. Pediatr Nephrol 26:1115–1121

    Article  PubMed  Google Scholar 

  15. Zandi-Nejad K, Luyckx VA, Brenner BM (2006) Adult hypertension and kidney disease: the role of fetal programming. Hypertension 47:502–508

    Article  PubMed  CAS  Google Scholar 

  16. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    PubMed  CAS  Google Scholar 

  17. Bagby SP (2007) Maternal nutrition, low nephron number, and hypertension in later life: pathways of nutritional programming. J Nutr 137:1066–1072

    PubMed  CAS  Google Scholar 

  18. Dotsch J, Plank C, Amann K, Ingelfinger J (2009) The implications of fetal programming of glomerular number and renal function. J Mol Med 87:841–848

    Article  PubMed  Google Scholar 

  19. Baum M (2010) Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol 298:F235–F247

    Article  PubMed  CAS  Google Scholar 

  20. Brenner BM, Chertow GM (1994) Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis 23:171–175

    PubMed  CAS  Google Scholar 

  21. Bagby SP (2009) Developmental origins of renal disease: should nephron protection begin at birth? Clin J Am Soc Nephrol 4:10–13

    Article  PubMed  Google Scholar 

  22. Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910

    Article  PubMed  Google Scholar 

  23. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET, Frolich M, van der Heijden BJ (2005) Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol 16:2762–2768

    Article  PubMed  CAS  Google Scholar 

  24. Bacchetta J, Harambat J, Dubourg L, Guy B, Liutkus A, Canterino I, Kassai B, Putet G, Cochat P (2009) Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int 76:445–452

    Article  PubMed  Google Scholar 

  25. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25

    Article  PubMed  Google Scholar 

  26. Gubhaju L, Sutherland MR, Black MJ (2011) Preterm birth and the kidney: implications for long-term renal health. Reprod Sci 18:322–333

    Article  PubMed  Google Scholar 

  27. Hughson M, Farris AB III, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: The relationship to birth weight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  28. Manalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58:770–773

    Article  PubMed  CAS  Google Scholar 

  29. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64:777–784

    PubMed  CAS  Google Scholar 

  30. Rodriguez-Soriano J, Aguirre M, Oliveros R, Vallo A (2005) Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol 20:579–584

    Article  PubMed  Google Scholar 

  31. 2004 National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  32. Finney H, Newman DJ, Gruber W, Merle P, Price CP (1997) Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the Behring nephelometer systems (BNA, BN II). Clin Chem 43:1016–1022

    PubMed  CAS  Google Scholar 

  33. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  34. Tabachnick B, Fidell L (1996) Using multivariate statistics, 5th edn. Harper Collins College, New York, pp 127–195

    Google Scholar 

  35. Grubb AO (2000) Cystatin C—properties and use as diagnostic marker. Adv Clin Chem 35:63–99

    Article  PubMed  CAS  Google Scholar 

  36. Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414

    Article  PubMed  CAS  Google Scholar 

  37. Newman DJ (2002) Cystatin C. Ann Clin Biochem 39:89–104

    Article  PubMed  CAS  Google Scholar 

  38. Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis. Clin Biochem 40:383–391

    Article  PubMed  CAS  Google Scholar 

  39. Jerums G, Premaratne E, Panagiotopoulos S, Clarke S, Power DA, MacIsaac RJ (2008) New and old markers of progression of diabetic nephropathy. Diabetes Res Clin Pract 82 [Suppl 1]:S30–S37

    Article  PubMed  CAS  Google Scholar 

  40. Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J (2009) Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol 24:929–941

    Article  PubMed  Google Scholar 

  41. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  PubMed  CAS  Google Scholar 

  42. Guignard JP, John EG (1986) Renal function in the tiny, premature infant. Clin Perinatol 13:377–401

    PubMed  CAS  Google Scholar 

  43. Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA (1991) Expressing glomerular filtration rate in children. Pediatr Nephrol 5:5–11

    Article  PubMed  CAS  Google Scholar 

  44. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24:67–76

    Article  PubMed  Google Scholar 

  45. Vanpee M, Blennow M, Linne T, Herin P, Aperia A (1992) Renal function in very low birth weight infants: normal maturity reached during early childhood. J Pediatr 121:784–788

    Article  PubMed  CAS  Google Scholar 

  46. Hodgin JB, Rasoulpour M, Markowitz GS, D'Agati VD (2009) Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 4:71–76

    Article  PubMed  Google Scholar 

  47. Moritz KM, Wintour EM, Black MJ, Bertram JF, Caruana G (2008) Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol 196:1–78

    Article  PubMed  CAS  Google Scholar 

  48. Simeoni U, Ligi I, Buffat C, Boubred F (2011) Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues. Pediatr Nephrol 26:493–508

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Marshall Klaus Research Award from the American Academy of Pediatrics, Section on Perinatal Pediatrics awarded to Dr Duncan and the George M MacGregor Professorship in Pediatrics awarded to Dr Rosenfeld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Rosenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankfurt, J.A., Duncan, A.F., Heyne, R.J. et al. Renal function and systolic blood pressure in very-low-birth-weight infants 1–3 years of age. Pediatr Nephrol 27, 2285–2291 (2012). https://doi.org/10.1007/s00467-012-2265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2265-y

Keywords

Navigation