Skip to main content

Advertisement

Log in

Dialysis disequilibrium syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The dialysis disequilibrium syndrome is a rare but serious complication of hemodialysis. Despite the fact that maintenance hemodialysis has been a routine procedure for over 50 years, this syndrome remains poorly understood. The signs and symptoms vary widely from restlessness and headache to coma and death. While cerebral edema and increased intracranial pressure are the primary contributing factors to this syndrome and are the target of therapy, the precise mechanisms for their development remain elusive. Treatment of this syndrome once it has developed is rarely successful. Thus, measures to avoid its development are crucial. In this review, we will examine the pathophysiology of this syndrome and discuss the factors to consider in avoiding its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Harris CP, Townsend JJ (1989) Dialysis disequilibrium syndrome. West J Med 151:52–55

    PubMed  CAS  Google Scholar 

  2. Arieff AI (1989) More on the dialysis disequilibrium syndrome. West J Med 151:74–76

    PubMed  CAS  Google Scholar 

  3. Arieff AI (1994) Dialysis disequilibrium syndrome: current concepts on pathogenesis and prevention. Kidney Int 45:629–635

    Article  PubMed  CAS  Google Scholar 

  4. Mahoney CA, Arieff AI (1982) Uremic encephalopathies: clinical, biochemical, and experimental features. Am J Kidney Dis 2:324–336

    PubMed  CAS  Google Scholar 

  5. Kennedy AC, Linton AL, Eaton JC (1962) Urea levels in cerebrospinal fluid after haemodialysis. Lancet 1:410–411

    Article  PubMed  CAS  Google Scholar 

  6. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood–brain barrier development. Int J Dev Biol 55:467–476

    Article  PubMed  CAS  Google Scholar 

  7. Paolinelli R, Corada M, Orsenigo F, Dejana E (2011) The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? Pharmacol Res 63:165–171

    Article  PubMed  CAS  Google Scholar 

  8. Abbott NJ (2002) Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638

    Article  PubMed  CAS  Google Scholar 

  9. Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B 3rd, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann Biomed Eng 38:2499–2511

    Article  PubMed  Google Scholar 

  10. Silver SM, Sterns RH, Halperin ML (1996) Brain swelling after dialysis: old urea or new osmoles? Am J Kidney Dis 28:1–13

    Article  PubMed  CAS  Google Scholar 

  11. Fenstermacher JD, Johnson JA (1966) Filtration and reflection coefficients of the rabbit blood–brain barrier. Am J Physiol 211:341–346

    PubMed  CAS  Google Scholar 

  12. Kleeman CR, Davson H, Levin E (1962) Urea transport in the central nervous system. Am J Physiol 203:739–747

    PubMed  CAS  Google Scholar 

  13. Trinh-Trang-Tan MM, Cartron JP, Bankir L (2005) Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant 20:1984–1988

    Article  PubMed  CAS  Google Scholar 

  14. Rapoport SI, Robinson PJ (1986) Tight-junctional modification as the basis of osmotic opening of the blood–brain barrier. Ann N Y Acad Sci 481:250–267

    Article  PubMed  CAS  Google Scholar 

  15. Rosen SM, O’Connor K, Shaldon S (1964) Haemodialysis disequilibrium. Br Med J 2:672–675

    Article  PubMed  CAS  Google Scholar 

  16. Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212:1707–1715

    Article  PubMed  CAS  Google Scholar 

  17. Stern WE, Coxon RV (1964) Osmolality of brain tissue and its relation to brain bulk. Am J Physiol 206:1–7

    PubMed  CAS  Google Scholar 

  18. Silver SM, DeSimone JA Jr, Smith DA, Sterns RH (1992) Dialysis disequilibrium syndrome (DDS) in the rat: role of the "reverse urea effect". Kidney Int 42:161–166

    Article  PubMed  CAS  Google Scholar 

  19. Silver SM (1995) Cerebral edema after rapid dialysis is not caused by an increase in brain organic osmolytes. J Am Soc Nephrol 6:1600–1606

    PubMed  CAS  Google Scholar 

  20. Arieff AI, Massry SG, Barrientos A, Kleeman CR (1973) Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 4:177–187

    Article  PubMed  CAS  Google Scholar 

  21. Bagshaw SM, Peets AD, Hameed M, Boiteau PJ, Laupland KB, Doig CJ (2004) Dialysis Disequilibrium Syndrome: brain death following hemodialysis for metabolic acidosis and acute renal failure—a case report. BMC Nephrol 5:9

    Article  PubMed  Google Scholar 

  22. Sheth KN, Wu GF, Messe SR, Wolf RL, Kasner SE (2003) Dialysis disequilibrium: another reversible posterior leukoencephalopathy syndrome? Clin Neurol Neurosurg 105:249–252

    Article  PubMed  Google Scholar 

  23. Galons JP, Trouard T, Gmitro AF, Lien YH (1996) Hemodialysis increases apparent diffusion coefficient of brain water in nephrectomized rats measured by isotropic diffusion-weighted magnetic resonance imaging. J Clin Invest 98:750–755

    Article  PubMed  CAS  Google Scholar 

  24. Chen CL, Lai PH, Chou KJ, Lee PT, Chung HM, Fang HC (2007) A preliminary report of brain edema in patients with uremia at first hemodialysis: evaluation by diffusion-weighted MR imaging. AJNR Am J Neuroradiol 28:68–71

    PubMed  CAS  Google Scholar 

  25. Arieff AI, Guisado R, Massry SG, Lazarowitz VC (1976) Central nervous system pH in uremia and the effects of hemodialysis. J Clin Invest 58:306–311

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Almaraz E, Correa-Rotter R (2008) Dialysis disequilibrium syndrome and other treatment complications of extreme uremia: a rare occurrence yet not vanished. Hemodial Int 12:301–306

    Article  PubMed  Google Scholar 

  27. Grushkin CM, Korsch B, Fine RN (1972) Hemodialysis in small children. JAMA 221:869–873

    Article  PubMed  CAS  Google Scholar 

  28. Kishimoto T, Yamagami S, Tanaka H, Ohyama T, Yamamoto T, Yamakawa M, Nishino M, Yoshimoto S, Maekawa M (1980) Superiority of hemofiltration to hemodialysis for treatment of chronic renal failure: comparative studies between hemofiltration and hemodialysis on dialysis disequilibrium syndrome. Artif Organs 4:86–93

    Article  PubMed  CAS  Google Scholar 

  29. Patel N, Dalal P, Panesar M (2008) Dialysis disequilibrium syndrome: a narrative review. Semin Dial 21:493–498

    Article  PubMed  Google Scholar 

  30. Daugirdas JT (1993) Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol 4:1205–1213

    PubMed  CAS  Google Scholar 

  31. Goldstein SL, Sorof JM, Brewer ED (1999) Natural logarithmic estimates of Kt/V in the pediatric hemodialysis population. Am J Kidney Dis 33:518–522

    Article  PubMed  CAS  Google Scholar 

  32. Port FK, Johnson WJ, Klass DW (1973) Prevention of dialysis disequilibrium syndrome by use of high sodium concentration in the dialysate. Kidney Int 3:327–333

    Article  PubMed  CAS  Google Scholar 

  33. Rodrigo F, Shideman J, McHugh R, Buselmeier T, Kjellstrand C (1977) Osmolality changes during hemodialysis. Natural history, clinical correlations, and influence of dialysate glucose and intravenous mannitol. Ann Intern Med 86:554–561

    PubMed  CAS  Google Scholar 

  34. Arieff AI, Lazarowitz VC, Guisado R (1978) Experimental dialysis disequilibrium syndrome: prevention with glycerol. Kidney Int 14:270–278

    Article  PubMed  CAS  Google Scholar 

  35. Kennedy AC, Linton AL, Luke RG, Renfrew S, Dinwoodie A (1964) The pathogenesis and prevention of cerebral dysfunction during dialysis. Lancet 1:790–793

    Article  PubMed  CAS  Google Scholar 

  36. Arieff AI, Massry SG, Barrientos A, Kleeman CR (1973) Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 4:177–187

    Article  PubMed  CAS  Google Scholar 

  37. Kleeman CR (1989) Metabolic coma. Kidney Int 36:1142–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Quigley.

Additional information

Answers

1. E. Disequilibrium has been reported in a patient with a urea reduction ratio of 17 %. This patient had an initial urea concentration of 299 mg/dl. Thus, the initial BUN is critical. In addition, animal models have shown that the rate of reduction of urea is a crucial element in development of dialysis disequilibrium syndrome [15, 26, 36].

2. B. The microvascular endothelial cells of the BBB have low ion permeability, high reflection coefficient and high electrical resistance compared to other vascular beds. They regulate the movement of small organic solutes and ions [8, 9].

3. B. There is increased expression of AQP9 and AQP4 and decreased expression of UTB-1 [13].

4. C. This is a reduction of 40 % from the initial BUN over a time period of 2 h. While there are no studies to prove this is safe, there is consensus that this is a reasonable plan.

5. A. Infusing mannitol has been shown to reduce the symptoms of disequilibrium. Using a high dialysate sodium concentration (not low) would also help in preventing it.

Questions (answers are provided following the reference list)

Questions (answers are provided following the reference list)

1. What is/are the crucial element(s) involved in the development of dialysis disequilibrium syndrome

  1. a)

    Pre-dialysis concentration of urea

  2. b)

    Rate of urea removal

  3. c)

    Pre-dialysis blood pressure

  4. d)

    Patient’s volume status

  5. e)

    a and b

2. What component of the neural microenviroment is responsible for regulating movement of small organic solutes and ions between the blood and the CNS extracellular space?

  1. a)

    Choroid plexus

  2. b)

    Microvacular unfenestrated endothelial cells with tight junctions

  3. c)

    Astrocytes

  4. d)

    Neurons

  5. e)

    Glia

3. In uremic rats AQP4, AQP9 and UTB-1 are:

  1. a)

    AQP4↑, AQP9↓, UTB-1↑

  2. b)

    AQP4↑, AQP9↑, UTB-1↓

  3. c)

    AQP4↓, AQP9↑, UTB-1↓

  4. d)

    AQP4↑, AQP9↑, UTB-1↑

  5. c)

    AQP4↓, AQP9↓, UTB-1↓

4. A patient presents with signs and symptoms of uremia and is found to have a BUN of 200 mg/dl. A reasonable plan to avoid disequilibrium for the first dialysis treatment would be to lower his BUN to:

  1. a)

    40 mg/dl over 2 hours

  2. b)

    80 mg/dl over 4 hours

  3. c)

    120 mg/dl over 2 hours

  4. d)

    120 mg/dl over 1 hour

5. In the above patient, an additional maneuver to avoid disequilibrium would be to:

  1. a)

    infuse mannitol (1 gm/kg) over the first hour of treatment

  2. b)

    use a dialysate sodium concentration of 130 mEq/liter

  3. c)

    raise the dialysate bicarbonate concentration to 40 mEq/liter

  4. d)

    avoid any ultrafiltration of fluid

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zepeda-Orozco, D., Quigley, R. Dialysis disequilibrium syndrome. Pediatr Nephrol 27, 2205–2211 (2012). https://doi.org/10.1007/s00467-012-2199-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2199-4

Keywords

Navigation