Skip to main content
Log in

Electrolyte disturbances in acute pyelonephritis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine whether renal unresponsiveness to aldosterone associated with hyperkalemia is present in infants with acute pyelonephritis in the absence of significant urinary tract anomalies and to describe the clinical characteristics of patients presenting an inadequate renal response to hyperkalemia. The patient cohort comprised 113 infants with acute pyelonephritis (APN), based on the criteria of a temperature >38°C and significant bacteriuria. Serum and urine electrolytes, creatinine, osmolality, and renal tubular function tests were performed at diagnosis. The findings were compared to those present in 75 children who had fever without significant bacteriuria. Hyperkalemia (>5.5 mmol/L) was observed in infants with an APN diagnosis, who exhibited a lower transtubular potassium concentration gradient (TTKG) and a higher fractional sodium excretion. We defined inadequate renal response to hyperkalemia as the combination of hyperkalemia and TTKG below the normal range established for the age of the subject. Infants presenting an inadequate response to hyperkalemia were younger and associated more frequently with an APN diagnosis. This alteration could be explained by the renal interstitial inflammation present in acute pyelonephritis and the immaturity of the renal tubular responsiveness to aldosterone due to infancy in the absence of urinary tract infection or obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodríguez-Soriano J, Vallo A, Oliveros R, Castillo G (1983) Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr 103:375–380

    Article  PubMed  Google Scholar 

  2. Rodríguez-Soriano J, Vallo A, Quintela MJ, Oliveros R, Ubetagoyena M (1992) Normokalaemic pseudohypoaldosteronism is present in children with acute pyelonephritis. Acta Paediatr 81:402–406

    Article  PubMed  Google Scholar 

  3. Watanabe T (2004) Hyponatremia and hyperkalemia in infants with acute pyelonephritis. Pediatr Nephrol 19:361–362

    Article  PubMed  Google Scholar 

  4. Dolezel Z (2004) Secondary pseudohypoaldosteronism in an infant with pyelonephritis. Bratisl Lek Listy 105:435–437

    PubMed  CAS  Google Scholar 

  5. Gerigk M, Glanzmann R, Rascher W, Gnehm HE (1995) Hyponatremia and hyperkalemia in acute pyelonephritis without urinary tract anomalies. Eur J Pediatr 154:582–584

    Article  PubMed  CAS  Google Scholar 

  6. Kenichi M, Watanabe H, Onigata K (2002) Reversible secondary pseudohypoaldosteronism due to pyelonephritis. Pediatr Nephrol 17:1069–1070

    Article  Google Scholar 

  7. Nandagopal R, Vaidyanathan P, Kaplowitz P (2009) Transient pseudohypoaldosteronism due to urinary tract infection in infancy: a report of 4 cases. Int J Pediatr Endocrinol. doi:10.1155/2009/195728

  8. Asano T, Abe M, Asai M, Imai T, Kamisago M, Kuwabara K, Nakajima M, Murakami M, Fujino O (2006) Urinary Tract Malformation and Infection with hyperkalemia and decreased fractional excretion of potassium in an Infant. J Nippon Med Sch 73:289–291

    Article  Google Scholar 

  9. Sperl W, Guggenbichler JP, Warter T (1988) Changes in electrolyte and acid-base equilibrium in children with acute urinary tract infections. Padiatr Padol 23:121–128

    PubMed  CAS  Google Scholar 

  10. Thies KC, Boos K, Müller-Delle K, Ohrdorf W, Beushausen T, Townsend P (2000) Ventricular Flutter in a neonate-severe electrolyte imbalance caused by urinary tract infection in the presence of urinary tract malformation. J Emerg Med 18:47–50

    Article  PubMed  CAS  Google Scholar 

  11. Szalecki M, Wójcik E, Domagala Z, Malunowicz E (2007) Pseudohypoaldosteronism in infants with salt wasting syndrome. Two case reports. Pediatr Endocrinol Diabetes Metab 13:33–36

    PubMed  Google Scholar 

  12. Giapros VI, Tsatsoulis AA, Drougia EA, Kollios KD, Siomou EC, Andronikou SK (2003) Rare causes of acute hyperkalemia in the 1st week of life. Pediatr Nephrol 19:1046–1049

    Google Scholar 

  13. Bogdanovic R, Stajic N, Putnik J, Paripovic A (2009) Transient type 1 pseudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol 24:2167–2175

    Article  PubMed  Google Scholar 

  14. Watanabe T (2003) Reversible secondary pseudohypoaldosteronism. Pediatr Nephrol 18:486

    PubMed  Google Scholar 

  15. Rodríguez Soriano J (2002) Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 13:2160–2170

    Article  PubMed  Google Scholar 

  16. Weber KT (2001) Aldosterone in congestive heart failure. N Engl J Med 345:1689–1697

    Article  PubMed  CAS  Google Scholar 

  17. Valenstein P, Meier F (1998) Urine culture contamination. Arch Pathol Lab Med 122:123–129

    PubMed  CAS  Google Scholar 

  18. Yiee J, Wilcox D (2007) Management of fetal hydronephrosis. Pediatr Nephrol 23:347–353

    Article  PubMed  Google Scholar 

  19. Fefer S, Ellsworth P (2006) Prenatal hydronephrosis. Pediatr Clin North Am 53:429–447

    Article  PubMed  Google Scholar 

  20. Gargollo PC, Diamond DA (2007) Therapy Insight: what nephrologists need to know about primary vesicoureteral reflux. Nat Clin Pract Nephrol 3:551–556

    Article  PubMed  Google Scholar 

  21. Rodríguez Soriano J, Vallo A (1990) Transtubular potassium concentration gradient: a useful test to estimate renal aldosterone bio-activity in infants and children. Pediatr Nephrol 4:105–110

    Article  PubMed  Google Scholar 

  22. Choi MJ, Ziyadeh F (2008) The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol 19:424–426

    Article  PubMed  CAS  Google Scholar 

  23. Karet FE (2009) Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol 20:251–254

    Article  PubMed  CAS  Google Scholar 

  24. Geller DS, Rodríguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP (1998) Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19:279–281

    Article  PubMed  CAS  Google Scholar 

  25. Mayan H, Vered I, Mouallem M, Tzadok-Witkon M, Pauzner R, Farfel Z (2002) Pseudohypoaldosteronism Type II: marked sensitivity to thiazides, hypercalciuria, normomagnesemia, and low bone mineral density. J Clin Endocrinol Metab 87:3248–3254

    Article  PubMed  CAS  Google Scholar 

  26. Martinerie L, Pussard E, Foix-L'hélias L, Petit F, Cosson C, Boileau P, Lombè M (2009) Physiological partial aldosterone resistance in human newborns. Pediatr Res 66:323–328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite Augusta Gil-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil-Ruiz, M.A., Alcaraz, A.J., Marañón, R.J. et al. Electrolyte disturbances in acute pyelonephritis. Pediatr Nephrol 27, 429–433 (2012). https://doi.org/10.1007/s00467-011-2020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-2020-9

Keywords

Navigation