Skip to main content

Advertisement

Log in

Na+, K+, Cl, acid–base or H2O homeostasis in children with urinary tract infections: a narrative review

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Guidelines on the diagnosis and management of urinary tract infections in childhood do not address the issue of abnormalities in Na+, K+, Cl and acid–base balance. We have conducted a narrative review of the literature with the aim to describe the underlying mechanisms of these abnormalities and to suggest therapeutic maneuvers. Abnormalities in Na+, K+, Cl and acid–base balance are common in newborns and infants and uncommon in children of more than 3 years of age. Such abnormalities may result from factitious laboratory results, from signs and symptoms (such as excessive sweating, poor fluid intake, vomiting and passage of loose stools) of the infection itself, from a renal dysfunction, from improper parenteral fluid management or from the prescribed antimicrobials. In addition, two transient renal tubular dysfunctions may occur in infants with infectious renal parenchymal involvement: a reduced capacity to concentrate urine and pseudohypoaldosteronism secondary to renal tubular unresponsiveness to aldosterone that presents with hyponatremia, hyperkalemia and acidosis. In addition to antimicrobials, volume resuscitation with an isotonic solution is required in these children. In secondary pseudohypoaldosteronism, isotonic solutions (such as 0.9 % saline or lactated Ringer) correct not only the volume depletion but also the hyperkalemia and acidosis. In conclusion, our review suggests that in infants with infectious renal parenchymal involvement, non-renal and renal causes concur to cause fluid volume depletion and abnormalities in electrolyte and acid–base balance, most frequently hyponatremia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sperl W, Guggenbichler JP, Warter T (1988) Veränderungen im Elektrolyt- und Säure-Basenhaushalt bei Kindern mit akuten Harnwegsinfekten. Pädiatr Pädol 23:121–1282

    CAS  PubMed  Google Scholar 

  2. Watanabe T (2004) Hyponatremia and hyperkalemia in infants with acute pyelonephritis. Pediatr Nephrol 19:361–362

    Article  PubMed  Google Scholar 

  3. Gil-Ruiz MA, Alcaraz AJ, Marañón RJ, Navarro N, Huidobro B, Luque A (2012) Electrolyte disturbances in acute pyelonephritis. Pediatr Nephrol 27:429–433

    Article  PubMed  Google Scholar 

  4. Park SJ, Oh YS, Choi MJ, Shin JI, Kim KH (2012) Hyponatremia may reflect severe inflammation in children with febrile urinary tract infection. Pediatr Nephrol 27:2261–2267

    Article  PubMed  Google Scholar 

  5. Yousefichaijan P, Taherahmadi H, Rafiei M, Shariatmadari F, Alinejad S, Ghandi Y, Naziri M (2015) The association between hyponatremia and reflux-related renal injury in acute pyelonephritis. J Pediatr Nephrol 3:104–108

    Google Scholar 

  6. Randell E, Schneider W (2013) Medical errors in laboratory medicine: pathways to improvement. Clin Biochem 46:1159–1160

    Article  PubMed  Google Scholar 

  7. Burnett RW, Covington AK, Fogh-Andersen N, Külpmann WR, Lewenstam A, Maas AH, Müller-Plathe O, VanKessel AL, Zijlstra WG (2000) Use of ion-selective electrodes for blood-electrolyte analysis. Recommendations for nomenclature, definitions and conventions. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Scientific Division Working Group on Selective Electrodes. Clin Chem Lab Med 38:363–370

  8. Masters P, Blackburn ME, Henderson MJ, Barrett JF, Dear PR (1988) Determination of plasma bicarbonate of neonates in intensive care. Clin Chem 34:1483–1485

    CAS  PubMed  Google Scholar 

  9. Levene I (2014) Towards evidence based medicine for paediatricians. Question 1: is measurement of sodium from capillary blood accurate enough for clinical decision making? Arch Dis Child 99:481–482

    Article  PubMed  Google Scholar 

  10. Asirvatham JR, Moses V, Bjornson L (2013) Errors in potassium measurement: a laboratory perspective for the clinician. North Am J Med Sci 5:255–259

    Article  Google Scholar 

  11. Baird G (2013) Preanalytical considerations in blood gas analysis. Biochem Med (Zagreb) 23:19–27

    Article  CAS  Google Scholar 

  12. Wagenlehner FM, Lichtenstern C, Rolfes C, Mayer K, Uhle F, Weidner W, Weigand MA (2013) Diagnosis and management for urosepsis. Int J Urol 20:963–970

    PubMed  Google Scholar 

  13. Tulassay T, Miltényi M, Dobos M (1986) Alterations of urinary carbon dioxide tension, electrolyte handling and low molecular weight protein excretion in acute pyelonephritis. Acta Paediatr 75:415–419

    Article  CAS  Google Scholar 

  14. Winberg J (1958) Renal concentration capacity during acute, nonobstructive urinary tract infections in infancy and early childhood. Acta Paediatr 47:635–645

    Article  CAS  PubMed  Google Scholar 

  15. Winberg J (1959) Renal function studies in infants and children with acute, nonobstructive urinary tract infections. Acta Paediatr 48:577–589

    Article  CAS  PubMed  Google Scholar 

  16. Ronald AR, Cutler RE, Turck M (1969) Effect of bacteriuria on renal concentrating mechanisms. Ann Intern Med 70:723–733

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Soriano J, Vallo A (1975) Alteraciones de la función renal en la pielonefritis. An Esp Pediatr 8[Suppl 3]:21–28

    Google Scholar 

  18. Abyholm G, Monn E (1979) Intranasal DDAVP-test in the study of renal concentrating capacity in children with recurrent urinary tract infections. Eur J Pediatr 130:149–154

    Article  CAS  PubMed  Google Scholar 

  19. Berg U (1981) Renal function in acute febrile urinary tract infection in children: pathophysiologic aspects on the reduced concentrating capacity. Kidney Int 20:753–758

    Article  CAS  PubMed  Google Scholar 

  20. Donald RA, Bailey RR, Hart D, Livesey JH, Evans MJ, Mattioli L, Macdonald J, Smith AH (1994) The plasma interleukin-6 and stress hormone responses to acute pyelonephritis. J Endocrinol Investig 17:263–268

    Article  CAS  Google Scholar 

  21. Rodionova EA, Kuznetsova AA, Shakhmatova EI, Prutskova N, Nielsen S, Holtbäck U, Natochin Y, Zelenina M (2006) Urinary aquaporin-2 in children with acute pyelonephritis. Pediatr Nephrol 21:361–367

    Article  PubMed  Google Scholar 

  22. Batlle DC, Arruda JA, Kurtzman NA (1981) Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304:373–380

    Article  CAS  PubMed  Google Scholar 

  23. Rodríguez-Soriano J, Vallo A, Oliveros R, Castillo G (1983) Transient pseudohypoaldosteronism secondary to obstructive uropathy in infancy. J Pediatr 103:375–380

    Article  PubMed  Google Scholar 

  24. Heijden AJ, Versteegh FG, Wolff ED, Sukhai RN, Scholtmeijer RJ (1985) Acute tubular dysfunction in infants with obstructive uropathy. Acta Paediatr Scand 74:589–594

    Article  Google Scholar 

  25. Rodríguez-Soriano J, Vallo A, Quintela MJ, Oliveros R, Ubetagoyena M (1992) Normokalaemic pseudohypoaldosteronism is present in children with acute pyelonephritis. Acta Paediatr 81:402–406

    Article  PubMed  Google Scholar 

  26. Belot A, Ranchin B, Fichtner C, Pujo L, Rossier BC, Liutkus A, Morlat C, Nicolino M, Zennaro MC, Cochat P (2008) Pseudohypoaldosteronisms, report on a 10-patient series. Nephrol Dial Transplant 23:1636–1641

    Article  PubMed  Google Scholar 

  27. Bogdanović R, Stajić N, Putnik J, Paripović A (2009) Transient type 1 pseudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol 24:2167–2175

    Article  PubMed  Google Scholar 

  28. Marra G, Goj V, Appiani AC, Dell Agnola CA, Tirelli SA, Tadini B, Nicolini U, Cavanna G, Assael BM (1987) Persistent tubular resistance to aldosterone in infants with congenital hydronephrosis corrected neonatally. J Pediatr 110:868–872

    Article  CAS  PubMed  Google Scholar 

  29. Gattineni J, Baum M (2015) Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 30:2085–2098

    Article  PubMed  Google Scholar 

  30. Nimkarn S, Lin-Su K, New MI (2011) Steroid 21 hydroxylase deficiency congenital adrenal hyperplasia. Pediatr Clin North Am 58:1281–1300

    Article  PubMed  Google Scholar 

  31. Santi M, Lava SA, Camozzi P, Giannini O, Milani GP, Simonetti GD, Fossali EF, Bianchetti MG, Faré PB (2015) The great fluid debate: saline or so-called "balanced" salt solutions? Ital J Pediatr 41:47

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peruzzo M, Milani GP, Garzoni L, Longoni L, Simonetti GD, Bettinelli A, Fossali EF, Bianchetti MG (2010) Body fluids and salt metabolism—part II. Ital J Pediatr 36:78

    Article  PubMed  PubMed Central  Google Scholar 

  33. Padua AP, Macaraya JR, Dans LF, Anacleto FE Jr (2015) Isotonic versus hypotonic saline solution for maintenance intravenous fluid therapy in children: a systematic review. Pediatr Nephrol 30:1163–1172

    Article  PubMed  Google Scholar 

  34. Zietse R, Zoutendijk R, Hoorn EJ (2009) Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol 5:193–202

    Article  CAS  PubMed  Google Scholar 

  35. Kitterer D, Schwab M, Alscher MD, Braun N, Latus J (2015) Drug-induced acid-base disorders. Pediatr Nephrol 30:1407–1423

    Article  PubMed  Google Scholar 

  36. Bettinelli A, Longoni L, Tammaro F, Faré PB, Garzoni L, Bianchetti MG (2012) Renal salt-wasting syndrome in children with intracranial disorders. Pediatr Nephrol 27:733–739

    Article  PubMed  Google Scholar 

  37. Swart RM, Hoorn EJ, Betjes MG, Zietse R (2012) Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol 118:45–51

    Article  Google Scholar 

  38. Pringle K, Shah SP, Umulisa I, Mark Munyaneza RB, Dushimiyimana JM, Stegmann K, Musavuli J, Ngabitsinze P, Stulac S, Levine AC (2011) Comparing the accuracy of the three popular clinical dehydration scales in children with diarrhea. Int J Emerg Med 4:58

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liao PF, Ku MS, Tsai JD, Choa YH, Hung TW, Lue KH, Sheu JN (2014) Comparison of procalcitonin and different guidelines for first febrile urinary tract infection in children by imaging. Pediatr Nephrol 29:1567–1574

    Article  PubMed  Google Scholar 

  40. Morello W, La Scola C, Alberici I, Montini G (2015) Acute pyelonephritis in children. Pediatr Nephrol. doi:10.1007/s00467-015-3168-5

    PubMed  Google Scholar 

  41. Bacchetta J, Basmaison O, Leclerc AL, Bertholet-Thomas A, Cochat P, Ranchin B (2014) Fludrocortisone as a new tool for managing tubulopathy after pediatric renal transplantation: a series of cases. Pediatr Nephrol 29:2061–2064

    Article  PubMed  Google Scholar 

  42. Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF (2009) Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am J Physiol Ren Physiol 297:F1575–F1586

    Article  CAS  Google Scholar 

  43. Baumer JH, Jones RW (2007) Urinary tract infection in children, National Institute for Health and Clinical Excellence. Arch Dis Child Educ Pract Ed 92:189–192

    Article  CAS  PubMed  Google Scholar 

  44. Newman TB (2011) The new American Academy of Pediatrics urinary tract infection guideline. Pediatrics 128:572–575

    Article  PubMed  Google Scholar 

  45. Ammenti A, Cataldi L, Chimenz R, Fanos V, La Manna A, Marra G, Materassi M, Pecile P, Pennesi M, Pisanello L, Sica F, Toffolo A, Montini G, Italian Society of Pediatric Nephrology (2012) Febrile urinary tract infections in young children: recommendations for the diagnosis, treatment and follow-up. Acta Paediatr 101:451–457

    Article  PubMed  Google Scholar 

  46. Cohen R, Raymond J, Faye A, Gillet Y, Grimprel E (2015) Prise en charge des infections urinaires de l’enfant. Recommandations du groupe de pathologie infectieuse pédiatrique de la Société française de pédiatrie et de la Société de pathologie infectieuse de langue française. Arch Pediatr 22:665–671

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano A. G. Lava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Anna Bertini and Gregorio P. Milani contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, A., Milani, G.P., Simonetti, G.D. et al. Na+, K+, Cl, acid–base or H2O homeostasis in children with urinary tract infections: a narrative review. Pediatr Nephrol 31, 1403–1409 (2016). https://doi.org/10.1007/s00467-015-3273-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3273-5

Keywords

Navigation