Skip to main content
Log in

Effect of thiazides on bone mineral density in children with idiopathic hypercalciuria

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

To determine the effect of thiazide treatment on bone mineral density (BMD) in children with idiopathic hypercalciuria (IH) and osteopenia, we reviewed the case notes of 22 children aged 11.7 ± 2.7 years diagnosed with IH and osteopenia who had received thiazides for 2.4 years. The data on this group were compared with those of 32 IH children with osteopenia aged 11.2 ± 2.7 years who had not received thiazide treatment. By the end of the follow-up period, the z-BMD had improved spontaneously in 23 of the 32 control children (72%) and in 12 of the 22 patients on thiazides (54%). Although treated patients had a higher body mass index (BMI) and a higher BMD following treatment, the differences became statistically negligible when these parameters were expressed as z-BMD or as bone mineral apparent density (BMAD). In contrast, within the control group, there were significant differences in BMAD and z-BMD at the end of the follow-up. Patients who had an improved z-BMD at the end of the treatment also showed an increase in their BMI. Based on these results, we conclude that thiazide treatment does not improve the z-BMD in children with IH. More than half of the children suffering from IH enrolled in our study showed a spontaneous improvement in their z-BMD, which was more evident when the initial BMAD was not low and when their BMI increased during the follow-up period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zerwekh JE (2010) Bone disease and hypercalciuria in children. Pediatr Nephrol 25:395–401

    Article  PubMed  Google Scholar 

  2. García-Nieto V, Ferrández C, Monge M, de Sequera M, Rodrigo MD (1997) Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol 11:578–583

    Google Scholar 

  3. Freundlich M, Alonzo E, Bellorin-Font E, Weisinger JR (2002) Reduced bone mass in children with idiopathic hypercalciuria and in their asymptomatic mothers. Nephrol Dial Transplant 17:1396–1401

    Article  PubMed  Google Scholar 

  4. Penido MG, Lima EM, Marino VS, Tupinambá AL, França A, Souto MF (2003) Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol 18:133–139

    PubMed  Google Scholar 

  5. Schwaderer AL, Cronin R, Mahan JD, Bates CM (2008) Low bone density in children with hypercalciuria and/or nephrolithiasis. Pediatr Nephrol 23:2209–2214

    Google Scholar 

  6. Freundlich M, Alon US (2008) Bisphosphonates in children with hypercalciuria and reduced bone mineral density. Pediatr Nephrol 23:2215–2220

    Article  PubMed  Google Scholar 

  7. Coe FL, Kavalach AG (1974) Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis. N Engl J Med 291:1344–1350

    Article  PubMed  CAS  Google Scholar 

  8. Yendt ER, Gagner JA, Cohanim M (1966) The effect of thiazides in idiopathic hypercalciuria. Am J Med Sci 252:249–255

    Google Scholar 

  9. Woelfel A, Kaplan RA, Pak CYC (1977) Effect of hydrochlorothiazide therapy on the crystallization of calcium oxalate in urine. Metabolism 26:201–209

    Article  PubMed  CAS  Google Scholar 

  10. Cohanim M, Yendt ER (1980) Reduction of urine oxalate during long-term thiazide therapy in patients with calcium urolithiasis. Invest Urol 18:170–173

    PubMed  CAS  Google Scholar 

  11. Laerum E (1984) Metabolic effects of thiazide versus placebo in patients under long-term treatment for recurrent urolithiasis. Scand J Urol Nephrol 18:143–149

    Article  PubMed  CAS  Google Scholar 

  12. Eisner BH, Ahn J, Stoller ML (2009) Differentiating primary from secondary hyperparathyroidism in stone patients: the "thiazide challenge". J Endourol 23:191–192

    Article  PubMed  Google Scholar 

  13. Pack CYK (1987) Citrate and renal calculi. Miner Electrol Metab 13:257–266

    Google Scholar 

  14. Reusz GS, Dobos M, Tulassay T, Miltényi M (1993) Hydrochlorothiazide treatment of children with hipercalciuria: effects and side effects. Pediatr Nephrol 7:699–702

    Article  PubMed  CAS  Google Scholar 

  15. Voskaki I, Al Qadreh A, Mengreli CH, Sbyrakis S (1992) Effect of hydrochlorothiazide on renal hypercalciuria. Child Nephrol Urol 12:6–9

    PubMed  CAS  Google Scholar 

  16. Langman CB, Schmeissing KJ, Sailer DE (1994) Children with genetic hypercalciuria exhibit thiazide-responsive osteopenia. Pediatr Res 35:368

    Google Scholar 

  17. Gadomska-Prokop K, Konopielko Z (1997) Effect of urinary stone prevention method on bone mineralization in children with hypercalciuria. In: Jungers P, Daudon M (eds) Renal stone disease. Crystallization process, pathophysiology, metabolic disorders and prevention. Elsevier, Paris, pp 171–172

  18. Reusz GS, Dobos M, Vásárhelyi B, Sallay P, Szabó A, Horváth C, Szabó A, Byrd DJ, Thole HH, Tulassay T (1998) Sodium transport and bone mineral density in hypercalciuria with thiazide treatment. Pediatr Nephrol 12:30–34

    Article  PubMed  CAS  Google Scholar 

  19. Quan A, Adams R, Ekmark E, Baum M (2003) Bone mineral density in children with myelomeningocele: effect of hydrochlorothiazide. Pediatr Nephrol 18:929–933

    Article  PubMed  Google Scholar 

  20. Butani L, Kalia A (2004) Idiopathic hypercalciuria in children–how valid are the existing diagnostic criteria? Pediatr Nephrol 19:577–582

    Article  PubMed  Google Scholar 

  21. García Nieto V, Sánchez Almeida E, Monge M, Luis Yanes MI, Hernández González MJ, Ibáñez A (2009) Longitudinal study, bone mineral density in children diagnosed with idiopathic hypercalciuria. Pediatr Nephrol 24:2083

    Google Scholar 

  22. Stapleton FB, Kroovand RL (1996) Stones in children. In: Coe FL, Favus MF, Pak CYC, Parks JH, Preminger GM (eds) Kidney stones medical and surgical management. Lippincott-Raven, Philadelphia, pp 1065–1080

    Google Scholar 

  23. Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A (1991) Bone mass in healthy children: measurement with quantitative DXA. Radiology 79:735–738

    Google Scholar 

  24. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  PubMed  CAS  Google Scholar 

  25. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    Article  PubMed  CAS  Google Scholar 

  26. Instituto de Investigación sobre Crecimiento y Desarrollo (1988) Curvas y tablas de crecimiento. Fundación Orbegozo, Editorial Garsi, Bilbao

  27. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41:138–154

    Article  PubMed  CAS  Google Scholar 

  28. Jergas M, Breitenseher M, Glüer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110

    Article  PubMed  CAS  Google Scholar 

  29. Leonard MB, Shults J, Zemel BS (2006) DXA estimates of vertebral volumetric bone mineral density in children: potential advantages of paired posteroanterior and lateral scans. J Clin Densitom 9:265–273

    Article  PubMed  Google Scholar 

  30. Eriksson S, Mellström D, Strandvik B (2009) Volumetric bone mineral density is an important tool when interpreting bone mineralization in healthy children. Acta Paediatr 98:374–379

    Article  PubMed  Google Scholar 

  31. El Hage R, Jacob C, Moussa E, Groussard C, Pineau JC, Benhamou CL, Jaffré C (2009) Influence of the weight status on bone mineral content and bone mineral density in a group of Lebanese adolescent girls. Joint Bone Spine 76:680–684

    Article  PubMed  Google Scholar 

  32. Eliakim A, Raisz LG, Brasel JA, Cooper DM (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713

    Article  PubMed  CAS  Google Scholar 

  33. Fonseca RM, de França NM, Van Praagh E (2008) Relationship between indicators of fitness and bone density in adolescent Brazilian children. Pediatr Exerc Sci 20:40–49

    PubMed  Google Scholar 

  34. Inomoto T (2008) Physical activity/sports and bone mineral density. Clin Calcium 18:1339–1348

    PubMed  Google Scholar 

  35. Sardinha LB, Baptista F, Ekelund U (2008) Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics 122:e728–e736

    Article  PubMed  Google Scholar 

  36. Ezzat Y, Hamdy K (2010) The frequency of low bone mineral density and its associated risk factors in patients with inflammatory bowel diseases. Int J Rheum Dis 13:259–265

    Article  PubMed  Google Scholar 

  37. Caillot-Augusseau A, Lafage-Proust MH, Margaillan P, Vergely N, Faure S, Paillet S, Lang F, Alexandre C, Estour B (2000) Weight gain reverses bone turnover and restores circadian variation of bone resorption in anorexic patients. Clin Endocrinol (Oxf) 52:113–121

    Article  CAS  Google Scholar 

  38. García Nieto V, Luis Yanes MI, Quintana Herrera MC, Marrero Pérez C (2004) Osteopenia en niños afectos de síndrome nefrótico idiopático. ¿Son los corticoides? Nefrología 24[Suppl 5]:44

  39. Maschio G, Tessitore N, D’Angelo A, Fabris A, Pagano F, Tasca A, Graziani G, Aroldi A, Surian M, Colussi G, Mandressi A, Trinchieri A, Rocco F, Ponticelli C, Minetti L (1981) Prevention of calcium nephrolithiasis with low-dose thiazide, amiloride and allopurinol. Am J Med 71:623–626

    Article  PubMed  CAS  Google Scholar 

  40. Leppla D, Browne R, Hill K, Pak CY (1983) Effect of amiloride with or without hydrochlorothiazide on urinary calcium and saturation of calcium salts. J Clin Endocrinol Metab 57:920–924

    Article  PubMed  CAS  Google Scholar 

  41. LaCroix AZ, Ott SM, Ichikawa L, Scholes D, Barlow WE (2000) Low-dose hydrochlorothiazide and preservation of bone mineral density in older adults. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 133:516–526

    PubMed  CAS  Google Scholar 

  42. Adams JS, Song CF, Kantorovich V (1999) Rapid recovery of bone mass in hypercalciuric, osteoporotic men treated with hydrochlorothiazide. Ann Intern Med 130:658–660

    PubMed  CAS  Google Scholar 

  43. Laroche M, Mazières B (1998) Beneficial effect of a thiazide diuretic on bone mineral density in male osteoporosis with hypercalciuria. Clin Exp Rheumatol 16:109–110

    PubMed  CAS  Google Scholar 

  44. Heilberg IP, Martini LA, Szejnfeld VL, Schor N (1997) Effect of thiazide diuretics on bone mass of nephrolithiasis patients with idiopathic hypercalciuria and osteopenia. J Bone Miner Res 12:S479

    Article  Google Scholar 

  45. Jones G, Nguyen T, Sambrook PN, Eisman JA (1995) Thiazide diuretics and fractures: Can meta-analysis help? J Bone Miner Res 10:106–111

    PubMed  CAS  Google Scholar 

  46. Reid IR, Ames RW, Orr-Walker BJ, Clearwater JM, Horne AM, Evans MC, Murray MA, McNeil AR, Gamble GD (2000) Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med 109:362–370

    Article  Google Scholar 

  47. Bolland MJ, Ames RW, Horne AM, Orr-Walker BJ, Gamble GD, Reid IR (2007) The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteoporos Int 18:479–486

    Article  PubMed  CAS  Google Scholar 

  48. Edwards NA, Hodgkinson A (1965) Metabolic studies in patients with idiopathic hypercalciuria. Clin Sci 29:143–157

    PubMed  CAS  Google Scholar 

  49. Pak CY, Oata M, Lawrence EC, Snyder W (1974) The hypercalciurias. Causes, parathyroid functions, and diagnostic criteria. J Clin Invest 54:387–400

    Article  PubMed  CAS  Google Scholar 

  50. Olmer M, Berland Y, Argemi B (1983) Absence of secondary hyperparathyroidism in most patients with renal hypercalciuria. Kidney Int Suppl 16:S175–S179

    PubMed  CAS  Google Scholar 

  51. Kim CH, Kim SW, Hong JS, Kim GS (1998) Effects of thiazide on human bone marrow stromal osteoprogenitor cells. Bone 23:S418

    Google Scholar 

  52. Hall TJ, Schaueblin M (1994) Hydrochlorothiazide inhibits osteoclastic bone resorption in vitro. Calcif Tissue Int 55:266–268

    Article  PubMed  CAS  Google Scholar 

  53. Lalande A, Roux S, Denne MA, Stanley ER, Schiavi P, Guez D, De Vernejoul MC (2001) Indapamide, a thiazide-like diuretic, decreases bone resorption in vitro. J Bone Miner Res 16:361–370

    Article  PubMed  CAS  Google Scholar 

  54. Aubin R, Ménard P, Lajeunesse D (1996) Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int 50:1476–1482

    Article  PubMed  CAS  Google Scholar 

  55. Dvorak MM, De Joussineau C, Carter DH, Pisitkun T, Knepper MA, Gamba G, Kemp PJ, Riccardi D (2007) Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol 18:2509–2516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor García-Nieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Nieto, V., Monge-Zamorano, M., González-García, M. et al. Effect of thiazides on bone mineral density in children with idiopathic hypercalciuria. Pediatr Nephrol 27, 261–268 (2012). https://doi.org/10.1007/s00467-011-1987-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1987-6

Keywords

Navigation