Skip to main content
Log in

Evolution of bone mineral density in patients with idiopathic hypercalciuria: a 20-year longitudinal study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Several recent studies reported bone mineral density (BMD) reduction in pediatric patients with idiopathic hypercalciuria (IH). This longitudinal study aimed to evaluate BMD evolution in IH patients through three bone densitometry studies conducted over 20 years on average. A second objective was to evaluate urine calcium and citrate excretion during this period.

Methods

Case notes of 34 patients diagnosed with IH at age 7.9 ± 3, alongside results of two bone densitometry studies, performed at 10.5 ± 2.7 (BMD1) and 14.5 ± 2.7 (BMD2) years of age, were reviewed. Patients underwent a third densitometry study in adulthood (BMD3) aged 28.3 ± 2.9. Mean follow-up duration (time-lapse between BMD1 and BMD3) was 17.7 ± 1.4 years.

Results

Statistically significant differences were found between z-BMD3 (− 0.85 ± 1.10) and z-BMD1 (− 1.47 ± 0.99) (P = 0.001) as well as between z-BMD3 and z-BMD2 (− 1.33 ± 1.20) (P = 0.016). At the end of follow-up, z-BMD3 was superior to z-BMD2 in 23 adult patients (67.6%) and lower in 11 patients (5M, 6F; 32.3%). Both men and women showed increased bone mass over time, although such increases were significant only for women. The gradual decrease observed in calcium/creatinine and citrate/creatinine ratios could be related to improvement in osteoblastic activity and especially reduction in osteoclastic activity.

Conclusions

In patients with IH, BMD improves, which may be related especially to female sex, increment of body mass, and reduction in bone resorption. Upon reaching adulthood, urine calcium and citrate excretion tend to decrease so lithogenic risk still remains. The cause of the latter is unknown, although it likely relates to changes in bone activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alhava EM, Juuti M, Karjalainen P (1976) Bone mineral density in patients with urolithiasis. A preliminary report. Scand J Urol Nephrol 10:154–156

    CAS  PubMed  Google Scholar 

  2. Malluche HH, Tschoepe W, Ritz E, Meyer-Sabellek W, Massry SG (1980) Abnormal bone histology in idiopathic hypercalciuria. J Clin Endocrinol Metab 50:654–658

    CAS  PubMed  Google Scholar 

  3. Messa P, Mioni G, Montanaro D, Adorati M, Antonucci F, Favazza A, Messa M, Enzmann G, Paganin L, Nardini R (1987) About a primitive osseous origin of the so-called ‘renal hypercalciuria’. Contrib Nephrol 58:106–110

    CAS  PubMed  Google Scholar 

  4. Filipponi P, Mannarelli C, Pacifici R, Grossi E, Moretti I, Tini S, Carloni C, Blass A, Morucci P, Hruska KA, Avioli LV (1998) Evidence for a prostaglandin-mediated bone resorptive mechanism in subjects with fasting hypercalciuria. Calcif Tissue Int 43:61–66

    Google Scholar 

  5. Pacifici R, Rothstein M, Rifas L, Lau KW, Baylink DJ, Avioli LV, Hruska K (1990) Increased monocyte interleukin-1 activity and decreased vertebral bone density in patients with fasting idiopathic hypercalciuria. J Clin Endocrinol Metab 71:138–145

    CAS  PubMed  Google Scholar 

  6. Maierhofer WJ, Gray RW, Cheung HS, Lemann J Jr (1983) Bone resorption stimulated by elevated serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int 24:555–560

    CAS  PubMed  Google Scholar 

  7. Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25-dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci U S A 82:8213–8217

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Krieger NS, Stathopoulos VM, Bushinsky DA (1996) Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats. Am J Phys 271:C130–C135

    CAS  Google Scholar 

  9. Bushinsky DA, Neumann KJ, Asplin J, Krieger NS (1999) Alendronate decreases urine calcium and supersaturation in genetic hypercalciuric rats. Kidney Int 55:234–243

    CAS  PubMed  Google Scholar 

  10. García-Nieto V, Ferrández C, Monge M, de Sequera M, Rodrigo MD (1997) Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol 11:578–583

    PubMed  Google Scholar 

  11. Freundlich M, Alonzo E, Bellorin-Font E, Weisinger JR (2002) Reduced bone mass in children with idiopathic hypercalciuria and in their asymptomatic mothers. Nephrol Dial Transplant 17:1396–1401

    PubMed  Google Scholar 

  12. Penido MG, Lima EM, Marino VS, Tupinambá AL, França A, Souto MF (2003) Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol 18:133–139

    PubMed  Google Scholar 

  13. Schwaderer AL, Cronin R, Mahan JD, Bates CM (2008) Low bone density in children with hypercalciuria and/or nephrolithiasis. Pediatr Nephrol 23:2209–2214

    PubMed  Google Scholar 

  14. Butani L, Kalia A (2004) Idiopathic hypercalciuria in children– how valid are the existing diagnostic criteria? Pediatr Nephrol 19:577–582

    PubMed  Google Scholar 

  15. García Nieto V, Sánchez Almeida E, Monge M, Luis Yanes MI, Hernández González MJ, Ibáñez A (2009) Longitudinal study, bone mineral density in children diagnosed with idiopathic hypercalciuria. Pediatr Nephrol 24:2083

    Google Scholar 

  16. Carrascosa A, Fernández M, Ferrández A, López-Siguero JP, López D, Sánchez E; y Grupo Colaborador (2010) Estudio Español de Crecimiento. Spanish Association of Pediatrics. Available at: http://www.aeped.es/noticias/estudios-espanoles-crecimiento-2010

  17. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    PubMed  PubMed Central  Google Scholar 

  18. Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A (1991) Bone mass in healthy children: measurement with quantitative DXA. Radiology 79:735–738

    Google Scholar 

  19. Moore ES (1981) Hypercalciuria in children. Contrib Nephrol 27:20–32

    CAS  PubMed  Google Scholar 

  20. Cervera A, Corral MJ, Gómez Campdera FJ, De Lecea AM, Luque A, López Gómez JM (1987) Idiopathic hypercalciuria in children. Classification, clinical manifestations and outcome. Acta Paediatr Scand 76:271–278

    CAS  PubMed  Google Scholar 

  21. García Nieto VM, Luis Yanes MI, Tejera Carreño P, Pérez Suarez G, Moraleda Mesa T (2019) The idiopathic hypercalciuria reviewed. Metabolic abnormality or disease? Nefrologia 39:592–602

    PubMed  Google Scholar 

  22. Alon US, Zimmerman H, Alon M (2004) Evaluation and treatment of pediatric idiopathic urolithiasis-revisited. Pediatr Nephrol 19:516–520

    PubMed  Google Scholar 

  23. Spivacow FR, Pailler M, Martínez P (2019) Idiopathic hypercalciuria: can the diuretics be avoided? Medicina (B Aires) 79:477–482

    Google Scholar 

  24. Aladjem M, Barr J, Lahat E, Bistritzer T (1996) Renal and absorptive hypercalciuria: a metabolic disturbance with varying and interchanging modes of expression. Pediatrics 97:216–219

    CAS  PubMed  Google Scholar 

  25. Perrone HC, Toporovski J, Schor N (1996) Urinary inhibitors of crystallization in hypercalciuric children with hematuria and nephrolithiasis. Pediatr Nephrol 10:435–437

    CAS  PubMed  Google Scholar 

  26. Penido MG, Lima EM, Souto MF, Marino VS, Tupinambá AL, França A (2006) Hypocitraturia: a risk factor for reduced bone mineral density in idiopathic hypercalciuria? Pediatr Nephrol 21:74–78

    PubMed  Google Scholar 

  27. Edwards NA, Hodgkinson A (1965) Metabolic studies in patients with idiopathic hypercalciuria. Clin Sci 29:143–157

    CAS  PubMed  Google Scholar 

  28. Weisinger JR (1996) New insights into the pathogenesis of idiopathic hypercalciuria: the role of bone. Kidney Int 49:1507–1518

    CAS  PubMed  Google Scholar 

  29. Mohamad NV, Soelaiman IN, Chin KY (2016) A concise review of testosterone and bone health. Clin Interv Aging 11:1317–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomkinson A, Reeve J, Shaw R, Noble B (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone 1. J Clin Endocrinol Metab 82:3128–3135

    CAS  PubMed  Google Scholar 

  31. El Hage R, Jacob C, Moussa E, Groussard C, Pineau JC, Benhamou CL, Jaffré C (2009) Influence of the weight status on bone mineral content and bone mineral density in a group of Lebanese adolescent girls. Joint Bone Spine 76:680–684

    PubMed  Google Scholar 

  32. Fonseca RM, de França NM, Van Praagh E (2008) Relationship between indicators of fitness and bone density in adolescent Brazilian children. Pediatr Exerc Sci 20:40–49

    PubMed  Google Scholar 

  33. Ezzat Y, Hamdy K (2010) The frequency of low bone mineral density and its associated risk factors in patients with inflammatory bowel diseases. Int J Rheum Dis 13:259–265

    PubMed  Google Scholar 

  34. García-Nieto V, Monge-Zamorano M, González-García M, Luis-Yanes MI (2012) Effect of thiazides on bone mineral density in children with idiopathic hypercalciuria. Pediatr Nephrol 27:261–268

    PubMed  Google Scholar 

  35. Vatassery GT, Armstrong WD, Singer L (1970) Determination of hydroxyl content of calcified tissue mineral. Calcif Tissue Res 5:183–188

    CAS  PubMed  Google Scholar 

  36. Poyart CF, Bursaux E, Fréminet A (1975) The bone CO2 compartment: evidence for a bicarbonate pool. Respir Physiol 25:89–99

    CAS  PubMed  Google Scholar 

  37. Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Phys 244:F223–F234

    CAS  Google Scholar 

  38. Melnick JZ, Preisig PA, Moe OW, Srere P, Alpern RJ (1998) Renal cortical mitochondrial aconitase is regulated in hypo- and hypercitraturia. Kidney Int 54:160–165

    CAS  PubMed  Google Scholar 

  39. Weger M, Deutschmann H, Weger W, Kotanko P, Skrabal F (1999) Incomplete renal tubular acidosis in ‘primary’ osteoporosis. Osteoporos Int 10:325–329

    CAS  PubMed  Google Scholar 

  40. Sromicki JJ, Hess B (2017) Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment. Urolithiasis 45:263–269

    CAS  PubMed  Google Scholar 

  41. Barcelo P, Wuhl O, Servitge E, Rousaud A, Pak CY (1993) Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol 150:1761–1764

    CAS  PubMed  Google Scholar 

  42. Strohmaier WL, Seilnacht J, Schubert G (2012) Urinary stone formers with hypocitraturia and ‘normal’ urinary pH are at high risk for recurrence. Urol Int 88:294–297

    CAS  PubMed  Google Scholar 

  43. Arrabal-Polo MA, Arrabal-Martin M, Arias-Santiago S, Garrido-Gomez J, Poyatos-Andujar A, Zuluaga-Gomez A (2013) Importance of citrate and the calcium:citrate ratio in patients with calcium renal lithiasis and severe lithogenesis. BJU Int 111:622–627

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Perez-Suarez.

Ethics declarations

The procedures and protocols involved in this study met the ethical, administrative, and data protection requirements of the Pediatrics Department of our hospital, established in accordance with the Spanish laws. The study was carried out in accordance with the Standards of Good Clinical Practice of the European Community and the principles set forth in the Declaration of Helsinki. Patients were adequately informed about the study and signed a written informed consent form.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Suarez, G., Yanes, M.I.L., de Basoa, M.C.M.F. et al. Evolution of bone mineral density in patients with idiopathic hypercalciuria: a 20-year longitudinal study. Pediatr Nephrol 36, 661–667 (2021). https://doi.org/10.1007/s00467-020-04754-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04754-6

Keywords

Navigation