Skip to main content

Advertisement

Log in

Resistance to erythropoietin-stimulating agents: etiology, evaluation, and therapeutic considerations

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Routine clinical and laboratory assessments facilitate diagnosis of erythropoietin (EPO) resistant anemia by allowing early identification of patients with non-adherence. Any new event that impairs response to EPO (e.g., catheter sepsis) must be promptly controlled. Because of the confounding interaction of its risk factors, initial evaluation should include nutrition, dialysis adequacy, hemorrhage, bone mineral metabolism, and inflammation. Prevention of EPO resistance is more cost effective and should include adequate dialysis and nutritional supplements. Blood loss during hemodialysis (HD) procedures should be minimized. If there is laboratory proof of iron deficit intravenous repletion is most effective. Oxidative stress may be attenuated by vitamins E and C, while optimal control of hyperparathyroidism will enhance EPO stimulation. Contaminated dialysates should be suspected if there is EPO-stimulating agents (ESA) resistance at the same time among most members of a dialysis program. Heavy metal toxicity should be suspected in high-risk patients. The impact of co-morbidities such as hemoglobinopathy, glucose 6 phosphate dehydrogenase (G6PD) deficiency and connective tissue diseases must be excluded in an appropriate setting. In conclusion, given the multiple risk factors of EPO resistance promotion of the overall health status will most likely yield an enduring benefit. Finally, there are experimental trials of gene-based (therapy) to stimulate endogenous EPO synthesis with the goal of avoiding the off-target effect of excessive dosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Locatelli F, Aljama P, Bárány P, Canaud B, Carrera F, Eckardt KU, Hörl WH, Macdougal IC, Macleod A, Wiecek A, Cameron S, European Best Practice Guidelines Working Group (2002) Revised European Best Practice Guidelines for the management of anaemia in patients with chronic renal failure. Nephrol Dial Transplant 19:Sii1–Sii47

    Google Scholar 

  2. Klinger M, Arias M, Vargemezis V, Besarab A, Sulowicz W, Gerntholtz T, Ciechanowski K, Dougherty FC, Beyer U (2007) Efficacy of intravenous methoxy polyethylene glycol-epoetin beta administered every 2 weeks compared with epoetin administered 3 times weekly in patients treated by hemodialysis or peritoneal dialysis: a randomized trial. Am J Kidney Dis 50:989–1000

    Article  PubMed  CAS  Google Scholar 

  3. Atkinson MA, Martz K, Warady BA, Neu AM (2010) Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS 2010. Pediatr Nephrol 25(9):1699–1706

    Article  PubMed  Google Scholar 

  4. Wazny LD, Stojimirovic BB, Heidenheim P, Blake PG (2002) Factors influencing erythropoietin compliance in peritoneal dialysis patients. Am J Kidney Dis 40:623–628

    Article  PubMed  Google Scholar 

  5. KDOQI (2006) Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am J Kidney Dis 47:S1–S145

    Google Scholar 

  6. Cody J, Daly C, Campbell M, Donaldson C, Grant A, Khan I, Vale L, Wallace S, MacLeod A (2002) Frequency of administration of recombinant human erythropoietin for anaemia of end-stage renal disease in dialysis patients. Cochrane Database Syst Rev 4:CD003895

    PubMed  Google Scholar 

  7. Irwing JJ, Kirchner JT (2001) Anemia in children. Am Fam Physician 61:1379–1386

    Google Scholar 

  8. Schoorl M, Schoorl M, Nubé MJ, Bartels PC (2006) Erythropoiesis activity, iron availability and reticulocyte hemoglobinization during treatment with hemodialysis and in subjects with uremia. Clin Lab 52:621–629

    PubMed  CAS  Google Scholar 

  9. Gotloib L, Silverberg D, Fudin R, Shostak A (2006) Iron deficiency is a common cause of anemia in chronic kidney disease and can often be corrected with intravenous iron. J Nephrol 19:161–167

    PubMed  CAS  Google Scholar 

  10. Koshy SM, Geary DF (2008) Anemia in children with chronic kidney disease. Pediatr Nephrol 23:209–219

    Article  PubMed  Google Scholar 

  11. Van Wyck DB (2000) Management of early renal anaemia: diagnostic work-up, iron therapy, epoetin therapy. Nephrol Dial Transplant 15:36–39

    PubMed  Google Scholar 

  12. Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, Vaamonde CA (2001) Diagnostic value of iron indices in hemodialysis patients receiving epoetin. Kidney Int 60:300–308

    Article  PubMed  CAS  Google Scholar 

  13. Agarwal AK (2007) Practical approach to the diagnosis and treatment of anemia associated with CKD in elderly. J Am Med Dir Assoc 7:S7–S12

    Article  Google Scholar 

  14. Schiesser D, Binet I, Tsinalis D, Dickenmann M, Keusch G, Schmidli M, Ambühl PM, Lüthi L, Wüthrich RP (2006) Weekly low-dose treatment with intravenous iron sucrose maintains iron status and decreases epoetin requirement in iron-replete haemodialysis patients. Nephrol Dial Transplant 21:2841–2845

    Article  PubMed  CAS  Google Scholar 

  15. Johnson DW, Herzig KA, Gissane R, Campbell SB, Hawley CM, Isbel NM (2001) A prospective crossover trial comparing intermittent intravenous and continuous oral iron supplements in peritoneal dialysis patients. Nephrol Dial Transplant 16:1879–1884

    Article  PubMed  CAS  Google Scholar 

  16. Morgan HE, Holt RC, Jones CA, Judd BA (2007) Intravenous iron treatment in paediatric chronic kidney disease patients not on erythropoietin. Pediatr Nephrol 22:1963–1965

    Article  PubMed  Google Scholar 

  17. Coyne DW, Kapoian T, Suki W, Singh AK, Moran JE, Dahl NV, Rizkala AR (2007) Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients’ Response to IV Iron with Elevated Ferritin (DRIVE) Study. J Am Soc Nephrol 18:975–984

    Article  PubMed  CAS  Google Scholar 

  18. Kapoian T, O’Mara NB, Singh AK, Moran J, Rizkala AR, Geronemus R, Kopelman RC, Dahl NV, Coyne DW (2008) Ferric gluconate reduces epoetin requirements in hemodialysis patients with elevated ferritin. J Am Soc Nephrol 19:372–379

    Article  PubMed  CAS  Google Scholar 

  19. Port RE, Mehls O (2009) Erythropoietin dosing in children with chronic kidney disease: based on body size or on hemoglobin deficit? Pediatr Nephrol 24:435–437

    Article  PubMed  Google Scholar 

  20. Kalocheretis P, Vlamis I, Belesi C, Makriniotou I, Zerbala S, Savidou E, Zorbas S, Arvanitis N, Iatrou C (2006) Residual blood loss in single use dialyzers: effect of different membranes and flux. Int J Artif Organs 29:286–292

    PubMed  CAS  Google Scholar 

  21. Fabbian F, Catalano C, Bordin V, Balbi T, Di Landro D (2002) Esophagogastroduodenoscopy in chronic hemodialysis patients: 2-year clinical experience in a renal unit. Clin Nephrol 58:54–59

    PubMed  CAS  Google Scholar 

  22. Müller-Wiefel DE, Sinn H, Gilli G, Schärer K (1977) Hemolysis and blood loss in children with chronic renal failure. Clin Nephrol 8(5):481–486

    PubMed  Google Scholar 

  23. Tomori K, Nakamoto H, Kotaki S, Ishida Y, Takane H, Nemoto H, Kanno Y, Sugahara S, Okada H, Suzuki H (2003) Gastric angiodysplasia in patients undergoing maintenance dialysis. Adv Perit Dial 19:136–142

    PubMed  Google Scholar 

  24. Ford-Jones AE, Cogswell JJ (1975) Tests for occult in stools of children. Arch Dis Child 50:238–240

    Article  PubMed  CAS  Google Scholar 

  25. Raju GS, Gerson L, Das A, Lewis B (2007) American Gastroenterological Association (AGA) Institute medical position statement on obscure gastrointestinal bleeding. Gastroenterology 133:1694

    Article  PubMed  Google Scholar 

  26. Gatta L, Ricci C, Tampieri A, Osborn J, Perna F, Bernabucci V, Vaira D (2006) Accuracy of breath tests using low doses of 13C-urea to diagnose Helicobacter pylori infection: a randomised controlled trial. Gut 55:457–462

    Article  PubMed  CAS  Google Scholar 

  27. Kyrlagkitsis I, Ladas SD, Mallass EG, Raptis S, Mentis A, Delliou E, Zizi-Serbetzoglou A, Elemenoglou I, Antonakopoulos N, Karamanolis DG (2007) Evaluation of a conventional ELISA (Novitec) and a near patient immunochromatographic test (Stick H. pyl) for Helicobacter pylori antigen detection in stool. Hepatogastroenterology 54:799–802

    PubMed  CAS  Google Scholar 

  28. Brooker S, Jardim-Botelho A, Quinnell RJ, Geiger SM, Caldas IR, Fleming F, Hotez PJ, Correa-Oliveira R, Rodrigues LC, Bethony JM (2007) Age-related changes in hookworm infection, anaemia and iron deficiency in an area of high Necator americanus hookworm transmission in south-eastern Brazil. Trans R Soc Trop Med Hyg 101:146–154

    Article  PubMed  Google Scholar 

  29. Bergström J, Lindholm B, Lacson E Jr, Owen W Jr, Lowrie EG, Glassock RJ, Ikizler TA, Wessels FJ, Moldawer LL, Wanner C, Zimmermann J (2000) What are the causes and consequences of the chronic inflammatory state in chronic dialysis patients? Semin Dial 13:163–175

    Article  PubMed  Google Scholar 

  30. Macdougall IC, Cooper AC (2002) Erythropoietin resistance: the role of inflammation and pro-inflammatory cytokines. Nephrol Dial Transplant 17 [Suppl 11]:S39–S43

    Google Scholar 

  31. Jacobs C (2006) Intravenous vitamin C can improve anemia in erythropoietin-hyporesponsive hemodialysis patients. Nat Clin Pract Nephrol 2:552–553

    Article  PubMed  Google Scholar 

  32. Sezer S, Ozdemir FN, Yakupoglu U, Arat Z, Turan M, Haberal M (2002) Intravenous ascorbic acid administration for erythropoietin-hyporesponsive anemia in iron loaded hemodialysis patients. Artif Organs 26:366–370

    Article  PubMed  CAS  Google Scholar 

  33. Gallieni M, Corsi C, Brancaccio D (2000) Hyperparathyroidism and anemia in renal failure. Am J Nephrol 20:89–96

    Article  PubMed  CAS  Google Scholar 

  34. Al-Hilali N, Al-Humoud H, Ninan VT, Nampoory MR, Puliyclil MA, Johny KV (2007) Does parathyroid hormone affect erythropoietin therapy in dialysis patients? Med Princ Pract 16:63–67

    Article  PubMed  Google Scholar 

  35. Meytes D, Shacked N, Blum M, Ramot B (1990) Effect of excess parathyroid hormone on human bone marrow fibroblasts. Nephron 55:6–9

    Article  PubMed  CAS  Google Scholar 

  36. Nomura S, Ogawa Y, Osawa G, Katagiri M, Harada T, Nagahana H (1996) Myelofibrosis secondary to renal osteodystrophy. Nephron 72(4):683–687

    Article  PubMed  CAS  Google Scholar 

  37. Brunner S, Theiss HD, Murr A, Negele T, Franz WM (2007) Primary hyperparathyroidism is associated with increased circulating bone marrow-derived progenitor cells. Am J Physiol Endocrinol Metab 293:E1670–E1675

    Article  PubMed  CAS  Google Scholar 

  38. Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME (2006) Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–1372

    Article  PubMed  CAS  Google Scholar 

  39. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB (2006) Can acidosis and hyperphosphataemia result in increased erythropoietin dosing in haemodialysis patients? Nephrology (Carlton) 11:394–399

    Article  CAS  Google Scholar 

  40. Trunzo JA, McHenry CR, Schulak JA, Wilhelm SM (2008) Effect of parathyroidectomy on anemia and erythropoietin dosing in end-stage renal disease patients with hyperparathyroidism. Surgery 144:915–918

    Article  PubMed  Google Scholar 

  41. National Kidney Foundation (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42:S1–S201

    Google Scholar 

  42. Modell B, Khan M, Darlison M, Westwood MA, Ingram D, Pennell DJ (2008) Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:42

    Article  PubMed  Google Scholar 

  43. Di Iorio B, Guastaferro P, Bellizzi V (2003) Relationship between resistance to erythropoietin and high anomalous hemoglobin levels in hemodialysis patients with beta-thalassemia minor. Blood Purif 21:376–380

    Article  PubMed  Google Scholar 

  44. Das N, Das Chowdhury T, Chattopadhyay A, Datta AG (2004) Attenuation of oxidative stress-induced changes in thalassemic erythrocytes by vitamin E. Pol J Pharmacol 56:85–96

    PubMed  CAS  Google Scholar 

  45. Roseff SD (2009) Sickle cell disease: a review. Immunohematology 25(2):67–74

    PubMed  CAS  Google Scholar 

  46. Teuscher T, Baillod B, Holzer BR (1991) Prevalence of human parvovirus B19 in sickle cell disease and healthy controls. Trop Geogr Med 43:108–110

    PubMed  CAS  Google Scholar 

  47. Mason PJ, Bautista JM, Gilsanz F (2007) G6PD deficiency: the genotype-phenotype association. Blood Rev 21:267–283

    Article  PubMed  CAS  Google Scholar 

  48. Bamgbola OF, Kaskel F (2005) Role of folate deficiency on erythropoietin resistance in pediatric and adolescent patients on chronic dialysis. Pediatr Nephrol 20:1622–1629

    Article  PubMed  Google Scholar 

  49. Bamgbola OF, Kaskel FJ, Coco M (2009) Analyses of age, gender and other risk factors of erythropoietin resistance in pediatric and adult dialysis cohorts. Pediatr Nephrol 24:571–579

    Article  PubMed  Google Scholar 

  50. Boeschoten EW, Schrijver J, Krediet RT, Schreurs WH, Arisz L (1988) Deficiencies of vitamins in CAPD patients: the effect of supplementation. Nephrol Dial Transplant 3:187–193

    PubMed  CAS  Google Scholar 

  51. Phekoo K, Williams Y, Schey SA, Andrews VE, Dudley JM, Hoffbrand AV (1979) Folate assays: serum or red cell? J R Coll Physicians Lond 31:291–295

    Google Scholar 

  52. Green R (2008) Indicators for assessing folate and vitamin B12 status and for monitoring the efficacy of intervention strategies. Food Nutr Bull 29:S52–S63

    PubMed  Google Scholar 

  53. Koppel JD, Jones MR, Keshavia PR, Bergstrom J, Lindsay RM, Moran J, Nolph KD, Teehan BP (1995) A proposed glossary for dialysis kinetics. Am J Kidney Dis 26:963–981

    Article  Google Scholar 

  54. Harty JC, Boulton H, Curwell J, Heelis N, Uttley L, Venning MC, Gokal R (1994) The normalized protein catabolic rate is a flawed marker of nutrition in CAPD patients. Kidney Int 45:103–109

    Article  PubMed  CAS  Google Scholar 

  55. Harty JC, Boulton H, Heelis N, Uttley L, Venning M, Gokal R (1993) Limitations of kinetic models as predictors of nutritional and dialysis adequacy in continuous ambulatory peritoneal dialysis patients. Am J Nephrol 13:454–463

    Article  PubMed  CAS  Google Scholar 

  56. Cano NJ, Miolane-Debouit M, Léger J, Heng AE (2009) Assessment of body protein: energy status in chronic kidney disease. Semin Nephrol 29:59–66

    Article  PubMed  CAS  Google Scholar 

  57. Perez-Garcia R, Rodriguez-Benitez P (1999) Chloramine, a sneaky contaminant of dialysate. Nephrol Dial Transplant 14:2579–2582

    Article  PubMed  CAS  Google Scholar 

  58. Sharples EJ, Varagunam M, Sinnott PJ, McCloskey DJ, Raftery MJ, Yaqoob MM (2006) The effect of proinflammatory cytokine gene and angiotensin-converting enzyme polymorphisms on erythropoietin requirements in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 26:64–68

    PubMed  CAS  Google Scholar 

  59. Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118

    Article  PubMed  CAS  Google Scholar 

  60. Kuypers DR, de Jonge H, Naesens M, de Loor H, Halewijck E, Dekens M, Vanrenterghem Y (2008) Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 30:673–683

    Article  PubMed  CAS  Google Scholar 

  61. Malluche HH (2002) Aluminum and bone disease in chronic renal failure. Nephrol Dial Transplant 17(S2):21–24

    PubMed  CAS  Google Scholar 

  62. Schwartz KA (1985) Aluminum-induced anemia. Am J Kidney Dis 6(5):348–352

    PubMed  Google Scholar 

  63. Jones RL, Homa DM, Meyer PA, Brody DJ, Caldwell KL, Pirkle JL, Brown MJ (2009) Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988–2004. Pediatrics 123(3):e376–e385

    Article  PubMed  Google Scholar 

  64. Patrick L (2006) Lead toxicity, a review of the literature. I. Exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22

    PubMed  Google Scholar 

  65. Oh RC, Brown DL (2003) Vitamin B12 deficiency. Am Fam Physician 67(5):979–986

    PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr. Matti Vehaskari for assistance in editorial reproof of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatoyin Bamgbola.

Additional information

Answers:

1. A

2. E

3. A

4. E

5. A

6. C

7. C

Questions (answers appear following the reference list)

Questions (answers appear following the reference list)

  1. 1.

    One of the following is not a risk factor for ESA resistance:

    1. A.

      Primary hyperparathyroidism

    2. B.

      Occult GI bleeding

    3. C.

      Folate deficiency

    4. D.

      Parvovirus B19

    5. E.

      Chlorinated dialysis water

  2. 2.

    Microcytic anemia occurs in all of the following except:

    1. A.

      Lead toxicity

    2. B.

      Iron deficiency

    3. C.

      Ascorbic acid deficiency

    4. D.

      Copper deficiency

    5. E.

      Diphyllobothrium worm infestation

  3. 3.

    Which of the following statements concerning the association of fatality and use of ESA is correct?

    1. A.

      Larger doses of ESA required to increase hemoglobin within the KDOQI target

    2. B.

      Larger doses of ESA required to increase hemoglobin in excess of 40%

    3. C.

      No change in ESA requirement, but unable to attain the K/DOQI target

    4. D.

      Lower doses of ESA while there is an increase in Hb above the K/DOQI target

    5. E.

      Attain K/DOQI target hemoglobin with intravenous iron only

  4. 4.

    The mechanism of ESA resistance in CKD includes all the following except:

    1. A.

      Impaired EPO synthesis

    2. B.

      Erythroid cell deficiency

    3. C.

      Oxidative stress

    4. D.

      Inflammatory cytokine

    5. E.

      Circulating antibodies

  5. 5.

    All are reasons for larger doses of ESA requirement in children except:

    1. A.

      Lower bone marrow response to EPO

    2. B.

      Greater incidence of infection

    3. C.

      Greater inflammatory status

    4. D.

      Greater ESA prescription by physicians

    5. E.

      Use of HD catheters

  6. 6.

    All are effective interventions in the modulation of oxidative stress except:

    1. A.

      Vitamin C

    2. B.

      Discontinuation of the hemodialysis catheter

    3. C.

      Angiotensin-converting enzyme inhibition

    4. D.

      Folate therapy

    5. E.

      Transplant nephrectomy

  7. 7.

    Mechanism of anemia due to mycophenolate mofetil (MMF):

    1. 1.

      Inhibition of type II inosine monophosphate dehydrogenase

    2. 2.

      Single nucleotide polymorphisms (SNPs) for uridine glucuronosyl-transferase 1A9

    3. 3.

      Suppression of catalase enzyme

    4. 4.

      Mitochondrial injury

    1. A.

      1, 2, 3

    2. B.

      1, 2

    3. C.

      3 only

    4. D.

      2 only

    5. E.

      2, 4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamgbola, O. Resistance to erythropoietin-stimulating agents: etiology, evaluation, and therapeutic considerations. Pediatr Nephrol 27, 195–205 (2012). https://doi.org/10.1007/s00467-011-1839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1839-4

Keywords

Navigation