Skip to main content

Advertisement

Log in

Chronic treatment with lisinopril decreases proliferative and apoptotic pathways in autosomal recessive polycystic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Angiotensin converting enzyme (ACE) inhibition is a common therapeutic modality in the treatment of autosomal recessive polycystic kidney disease (ARPKD). This study was designed to investigate whether chronic inhibition of ACE would have a therapeutic effect in attenuating the progression of renal cystogenesis in an orthologous rat model of ARPKD, the polycystic kidney (PCK) rat. Lisinopril (3 mg/kg per day) was administered orally for a period of 12 weeks, beginning at post-natal week 4. Lisinopril treatment resulted in an ∼30% improvement in the collecting duct cystic indices (CT CI) of PCK animals. Activation of extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2), proliferative signaling markers, and proliferating cell nuclear antigen (PCNA), an end-point marker for proliferation, was reduced following chronic treatment with lisinopril compared to that in vehicle-treated PCK rats. To assess whether apoptotic pathways were altered due to chronic ACE inhibition, we examined p38 mitogen activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which are markers of apoptotic signaling cascades. p38 MAPK was significantly reduced (P < 0.0001) following chronic treatment with lisinopril, but no change in the activation of SAPK/JNK could be detected by immunoblot analysis. Lisinopril treatment resulted in a significant reduction (P < 0.01) in cleaved caspase-7 levels, but not caspase-3 activity, in PCK rat kidneys compared to the vehicle-treated PCK rat kidneys. Proteinuria was completely ameliorated in the presence of chronic ACE inhibition in the lisinopril-treated rats compared with the vehicle-treated PCK rats. In all, these findings demonstrated that chronic ACE inhibition can beneficially alter proliferative and apoptotic pathways to promote therapeutic reductions in renal cyst development in ARPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sweeney WE Jr, Avner ED (2006) Molecular and cellular pathophysiology of autosomal recessive polycystic kidney disease (ARPKD). Cell Tissue Res 326:671–685

    Article  CAS  PubMed  Google Scholar 

  2. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70:1305–1317

    Article  CAS  PubMed  Google Scholar 

  3. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  4. Bonnet F, Cao Z, Cooper ME (2001) Apoptosis and angiotensin II: yet another renal regulatory system? Exp Nephrol 9:295–300

    Article  CAS  PubMed  Google Scholar 

  5. Lautrette A, Li S, Alili R, Sunnarborg SW, Burtin M, Lee DC, Friedlander G, Terzi F (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11:867–874

    Article  CAS  PubMed  Google Scholar 

  6. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029

    Article  CAS  PubMed  Google Scholar 

  7. Zhuo JL, Li XC (2007) Novel roles of intracrine angiotensin II and signalling mechanisms in kidney cells. J Renin Angiotensin Aldosterone Syst 8:23–33

    Article  CAS  PubMed  Google Scholar 

  8. Balbi AP, Francescato HD, Marin EC, Costa RS, Coimbra TM (2009) Roles of mitogen-activated protein kinases and angiotensin II in renal development. Braz J Med Biol Res 42:38–43

    Article  CAS  PubMed  Google Scholar 

  9. Calvet JP (2008) Strategies to inhibit cyst formation in ADPKD. Clin J Am Soc Nephrol 3:1205–1211

    Article  PubMed  Google Scholar 

  10. Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  CAS  PubMed  Google Scholar 

  11. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    CAS  PubMed  Google Scholar 

  12. Nakanishi K, Sweeney WE Jr, Macrae Dell K, Cotton CU, Avner ED (2001) Role of CFTR in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 12:719–725

    CAS  PubMed  Google Scholar 

  13. Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED (1998) Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 101:935–939

    Article  CAS  PubMed  Google Scholar 

  14. Sweeney WE Jr, Kusner L, Carlin CR, Chang S, Futey L, Cotton CU, Dell KM, Avner ED (2001) Phenotypic analysis of conditionally immortalized cells isolated from the BPK model of ARPKD. Am J Physiol Cell Physiol 281:C1695–C1705

    CAS  PubMed  Google Scholar 

  15. Park F, Sweeney WE Jr, Jia G, Akbulut T, Mueller B, Falck JR, Birudaraju S, Roman RJ, Avner ED (2009) Chronic blockade of 20-HETE synthesis reduces polycystic kidney disease in an orthologous rat model of ARPKD. Am J Physiol Renal Physiol 296:F575–F582

    Article  CAS  PubMed  Google Scholar 

  16. Lager DJ, Qian Q, Bengal RJ, Ishibashi M, Torres VE (2001) The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 59:126–136

    Article  CAS  PubMed  Google Scholar 

  17. Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  18. Zerres K, Rudnik-Schoneborn S, Deget F, Holtkamp U, Brodehl J, Geisert J, Scharer K (1996) Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Acta Paediatr 85:437–445

    Article  CAS  PubMed  Google Scholar 

  19. Zerres K, Rudnik-Schoneborn S, Senderek J, Eggermann T, Bergmann C (2003) Autosomal recessive polycystic kidney disease (ARPKD). J Nephrol 16:453–458

    CAS  PubMed  Google Scholar 

  20. Capisonda R, Phan V, Traubuci J, Daneman A, Balfe JW, Guay-Woodford LM (2003) Autosomal recessive polycystic kidney disease: outcomes from a single-center experience. Pediatr Nephrol 18:119–126

    PubMed  Google Scholar 

  21. Kaplan BS, Fay J, Shah V, Dillon MJ, Barratt TM (1989) Autosomal recessive polycystic kidney disease. Pediatr Nephrol 3:43–49

    Article  CAS  PubMed  Google Scholar 

  22. Keith DS, Torres VE, Johnson CM, Holley KE (1994) Effect of sodium chloride, enalapril, and losartan on the development of polycystic kidney disease in Han:SPRD rats. Am J Kidney Dis 24:491–498

    CAS  PubMed  Google Scholar 

  23. Kennefick TM, Al-Nimri MA, Oyama TT, Thompson MM, Kelly FJ, Chapman JG, Anderson S (1999) Hypertension and renal injury in experimental polycystic kidney disease. Kidney Int 56:2181–2190

    Article  CAS  PubMed  Google Scholar 

  24. Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL (2007) Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol 293:F854–F859

    Article  CAS  PubMed  Google Scholar 

  25. Chapman AB, Gabow PA (1997) Hypertension in autosomal dominant polycystic kidney disease. Kidney Int Suppl 61:S71–S73

    CAS  PubMed  Google Scholar 

  26. Chapman AB, Johnson A, Gabow PA, Schrier RW (1990) The renin-angiotensin-aldosterone system and autosomal dominant polycystic kidney disease. N Engl J Med 323:1091–1096

    Article  CAS  PubMed  Google Scholar 

  27. Masoumi A, Reed-Gitomer B, Kelleher C, Bekheirnia MR, Schrier RW (2008) Developments in the management of autosomal dominant polycystic kidney disease. Ther Clin Risk Manag 4:393–407

    PubMed  Google Scholar 

  28. Phillips JK, Hopwood D, Loxley RA, Ghatora K, Coombes JD, Tan YS, Harrison JL, McKitrick DJ, Holobotvskyy V, Arnolda LF, Rangan GK (2007) Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease. Kidney Blood Press Res 30:129–144

    Article  PubMed  Google Scholar 

  29. Hida M, Omori S, Awazu M (2002) ERK and p38 MAP kinase are required for rat renal development. Kidney Int 61:1252–1262

    Article  CAS  PubMed  Google Scholar 

  30. Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M (2006) Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 17:1604–1614

    Article  CAS  PubMed  Google Scholar 

  31. Ecder T, Melnikov VY, Stanley M, Korular D, Lucia MS, Schrier RW, Edelstein CL (2002) Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int 61:1220–1230

    Article  CAS  PubMed  Google Scholar 

  32. Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, Edelstein CL (2005) Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci U S A 102:6954–6959

    Article  CAS  PubMed  Google Scholar 

  33. Tao Y, Kim J, Stanley M, He Z, Faubel S, Schrier RW, Edelstein CL (2005) Pathways of caspase-mediated apoptosis in autosomal-dominant polycystic kidney disease (ADPKD). Kidney Int 67:909–919

    Article  CAS  PubMed  Google Scholar 

  34. Tao Y, Zafar I, Kim J, Schrier RW, Edelstein CL (2008) Caspase-3 gene deletion prolongs survival in polycystic kidney disease. J Am Soc Nephrol 19:749–755

    Article  CAS  PubMed  Google Scholar 

  35. Cowley BD Jr (2008) Calcium, cyclic AMP, and MAP kinases: dysregulation in polycystic kidney disease. Kidney Int 73:251–253

    Article  CAS  PubMed  Google Scholar 

  36. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  37. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  CAS  PubMed  Google Scholar 

  38. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274:20049–20052

    Article  CAS  PubMed  Google Scholar 

  39. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    Article  CAS  PubMed  Google Scholar 

  40. Kaariainen H, Koskimies O, Norio R (1988) Dominant and recessive polycystic kidney disease in children: evaluation of clinical features and laboratory data. Pediatr Nephrol 2:296–302

    Article  CAS  PubMed  Google Scholar 

  41. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, Kenney PJ, King BF Jr, Glockner JF, Wetzel LH, Brummer ME, O'Neill WC, Robbin ML, Bennett WM, Klahr S, Hirschman GH, Kimmel PL, Thompson PA, Miller JP (2003) Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int 64:1035–1045

    Article  PubMed  Google Scholar 

  42. Chapman AB, Johnson AM, Gabow PA, Schrier RW (1994) Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 5:1349–1354

    CAS  PubMed  Google Scholar 

  43. Ecder T, Edelstein CL, Fick-Brosnahan GM, Johnson AM, Chapman AB, Gabow PA, Schrier RW (2001) Diuretics versus angiotensin-converting enzyme inhibitors in autosomal dominant polycystic kidney disease. Am J Nephrol 21:98–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kevin R. Regner for his scientific insight in this manuscript, and Ms. Lisa Henderson and Jenifer Goepfert for their excellent technical expertise in the blood analysis. The research in this manuscript was funded in part by The PKD Foundation (F.P.), Advancing a Healthier Wisconsin (F.P.), the American Heart Association (V.N.) and institutional departmental laboratory start-up funds (F.P. and V.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, G., Kwon, M., Liang, H.L. et al. Chronic treatment with lisinopril decreases proliferative and apoptotic pathways in autosomal recessive polycystic kidney disease. Pediatr Nephrol 25, 1139–1146 (2010). https://doi.org/10.1007/s00467-010-1477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1477-2

Keywords

Navigation