Skip to main content
Log in

Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Amino-acid-based peritoneal dialysis (PD) fluids have been developed to improve the nutritional status of PD patients. As they may potentially exacerbate acidosis, an amino-acid-containing solution buffered with bicarbonate (Aminobic) has been proposed to effectively maintain acid-base balance. The aim of this study was to evaluate the mesothelial biocompatibility profile of this solution in comparison with a conventional low-glucose-based fluid. Omentum-derived human peritoneal mesothelial cells (HPMC) were preexposed to test PD solutions for up to 120 min, then allowed to recover in control medium for 24 h, and assessed for heat-shock response, viability, and basal and stimulated cytokine [interleukin (IL)-6] and prostaglandin (PGE2) release. Acute exposure of HPMC to conventional low-glucose-based PD solution resulted in a time-dependent increase in heat-shock protein (HSP-72) expression, impaired viability, and reduced ability to release IL-6 in response to stimulation. In contrast, in cells treated with Aminobic, the expression of HSP-72 was significantly lower, and viability and cytokine-producing capacity were preserved and did not differ from those seen in control cells. In addition, exposure to Aminobic increased basal release of IL-6 and PGE2. These data point to a favorable biocompatibility profile of the amino-acid-based bicarbonate-buffered PD solution toward HPMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Wieslander AP, Kjellstrand PT, Rippe B (1995) Heat sterilization of glucose-containing fluids for peritoneal dialysis: biological consequences of chemical alterations. Perit Dial Int 15:S52–S59

    Article  CAS  Google Scholar 

  2. ter Wee PM, van Ittersum FJ (2007) The new peritoneal dialysis solutions: friends only, or foes in part? Nat Clin Pract Nephrol 3:604–612

    Article  CAS  Google Scholar 

  3. Park MS, Choi SR, Song YS, Yoon SY, Lee SY, Han DS (2006) New insight of amino acid-based dialysis solutions. Kidney Int Suppl (103):S110-S114

    Article  Google Scholar 

  4. Selby NM, Fialova J, Burton JO, McIntyre CW (2007) The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids. Nephrol Dial Transplant 22:870–879

    Article  CAS  Google Scholar 

  5. Martikainen T, Teppo AM, Gronhagen-Riska C, Ekstrand A (2005) Benefit of glucose-free dialysis solutions on glucose and lipid metabolism in peritoneal dialysis patients. Blood Purif 23:303–310

    Article  CAS  Google Scholar 

  6. Zheng ZH, Sederholm F, Anderstam B, Qureshi AR, Wang T, Sodersten P, Bergstrom J, Lindholm B (2001) Acute effects of peritoneal dialysis solutions on appetite in non-uremic rats. Kidney Int 60:2392–2398

    Article  CAS  Google Scholar 

  7. Vychytil A, Fodinger M, Pleiner J, Mullner M, Konner P, Skoupy S, Rohrer C, Wolzt M, Sunder-Plassmann G (2003) Acute effect of amino acid peritoneal dialysis solution on vascular function. Am J Clin Nutr 78:1039–1045

    Article  CAS  Google Scholar 

  8. Brulez HF, van Guldener C, Donker AJ, ter Wee PM (1999) The impact of an amino acid-based peritoneal dialysis fluid on plasma total homocysteine levels, lipid profile and body fat mass. Nephrol Dial Transplant 14:154–159

    Article  CAS  Google Scholar 

  9. Feriani M, Passlick-Deetjen J, Jaeckle-Meyer I, La Greca G (2004) Individualized bicarbonate concentrations in the peritoneal dialysis fluid to optimize acid-base status in CAPD patients. Nephrol Dial Transplant 19:195–202

    Article  CAS  Google Scholar 

  10. Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD (1990) Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 37:1563–1570

    Article  CAS  Google Scholar 

  11. Ksiazek K, Piwocka K, Brzezinska A, Sikora E, Zabel M, Breborowicz A, Jörres A, Witowski J (2006) Early loss of proliferative potential of human peritoneal mesothelial cells in culture: the role of p16INK4a-mediated premature senescence. J Appl Physiol 100:988–995

    Article  Google Scholar 

  12. Witowski J, Topley N, Jörres A, Liberek T, Coles GA, Williams JD (1995) Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int 47:282–293

    Article  CAS  Google Scholar 

  13. Witowski J, Bender TO, Wisniewska-Elnur J, Ksiazek K, Passlick-Deetjen J, Breborowicz A, Jorres A (2003) Mesothelial toxicity of peritoneal dialysis fluids is related primarily to glucose degradation products, not to glucose per se. Perit Dial Int 23:381–390

    CAS  PubMed  Google Scholar 

  14. Bender TO, Riesenhuber A, Endemann M, Herkner K, Witowski J, Jorres A, Aufricht C (2007) Correlation between HSP-72 expression and IL-8 secretion in human mesothelial cells. Int J Artif Organs 30:199–203

    Article  CAS  Google Scholar 

  15. Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jörres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11:729–739

    CAS  Google Scholar 

  16. Arbeiter K, Bidmon B, Endemann M, Bender TO, Eickelberg O, Ruffingshofer D, Mueller T, Regele H, Herkner K, Aufricht C (2001) Peritoneal dialysate fluid composition determines heat shock protein expression patterns in human mesothelial cells. Kidney Int 60:1930–1937

    Article  CAS  Google Scholar 

  17. Schroder CH (2004) Optimal peritoneal dialysis: choice of volume and solution. Nephrol Dial Transplant 19:782–784

    Article  Google Scholar 

  18. Schmitt CP, Haraldsson B, Doetschmann R, Zimmering M, Greiner C, Boswald M, Klaus G, Passlick-Deetjen J, Schaefer F (2002) Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney Int 61:1527–1536

    Article  Google Scholar 

  19. Schaefer F, Klaus G, Muller-Wiefel DE, Mehls O (1999) Current practice of peritoneal dialysis in children: results of a longitudinal survey. Mid European Pediatric Peritoneal Dialysis Study Group (MEPPS). Perit Dial Int 19(Suppl 2):S445–S449

    Article  Google Scholar 

  20. Nash MA, Russo JC (1977) Neonatal lactic acidosis and renal failure: the role of peritoneal dialysis. J Pediatr 91:101–105

    Article  CAS  Google Scholar 

  21. Haas S, Schmitt CP, Arbeiter K, Bonzel KE, Fischbach M, John U, Pieper AK, Schaub TP, Passlick-Deetjen J, Mehls O, Schaefer F (2003) Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J Am Soc Nephrol 14:2632–2638

    Article  Google Scholar 

  22. Schroder CH (2001) The choice of dialysis solutions in pediatric chronic peritoneal dialysis: guidelines by an ad hoc European committee. Perit Dial Int 21:568–574

    Article  CAS  Google Scholar 

  23. Aufricht C, Endemann M, Bidmon B, Arbeiter K, Mueller T, Regele H, Herkner K, Eickelberg O (2001) Peritoneal dialysis fluids induce the stress response in human mesothelial cells. Perit Dial Int 21:85–88

    Article  CAS  Google Scholar 

  24. Chang JM, Lin SP, Lai YH, Chen HC (2007) Effects of glucose-free dialysis solutions on human peritoneal mesothelial cells. Am J Nephrol 27:206–211

    Article  Google Scholar 

  25. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V, Castro MA, Del Peso G, Cirujeda A, Gamallo C, Sanchez-Madrid F, Lopez-Cabrera M (2003) Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 348:403–413

    Article  Google Scholar 

  26. Riegel W, Ulrich C, Friedrichsohn C, Passlick-Deetjen J, Kohler H (1999) Liver cell reactive components in peritoneal dialysis fluids. Miner Electrolyte Metab 25:373–379

    Article  CAS  Google Scholar 

  27. Plum J, Razeghi P, Lordnejad RM, Perniok A, Fleisch M, Fussholler A, Schneider M, Grabensee B (2001) Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. Am J Kidney Dis 38:867–875

    Article  CAS  Google Scholar 

  28. Chan TM, Leung JK, Sun Y, Lai KN, Tsang RC, Yung S (2003) Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function. Nephrol Dial Transplant 18:1086–1094

    Article  CAS  Google Scholar 

  29. Zareie M, van Lambalgen AA, ter Wee PM, Hekking LHP, Keuning ED, Schadee-Eestermans IL, Faict D, Degreve B, Tangelder GJ, Beelen RHJ, van den Born J (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25:58–67

    Article  CAS  Google Scholar 

  30. Garosi G, Gaggiotti E, Monaci G, Brardi S, Di Paolo N (1998) Biocompatibility of a peritoneal dialysis solution with amino acids: histological evaluation in the rabbit. Perit Dial Int 18:610–619

    Article  CAS  Google Scholar 

  31. Plum J, Fusshöller A, Schoenicke G, Busch T, Erren C, Fieseler C, Kirchgessner J, Passlick-Deetjen J, Grabensee B (1997) In vivo and in vitro effects of amino-acid-based and bicarbonate- buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrol Dial Transplant 12:1652–1660

    Article  CAS  Google Scholar 

  32. Martikainen TA, Teppo AM, Grönhagen-Riska C, Ekstrand AV (2005) Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 25:453–460

    Article  CAS  Google Scholar 

  33. Steinhauer HB, Lubrich-Birkner I, Kluthe R, Baumann G, Schollmeyer P (1992) Effect of amino acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 12:61–67

    Article  CAS  Google Scholar 

  34. Reimann D, Dachs D, Meye C, Gross P (2004) Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int 24:378–384

    Article  CAS  Google Scholar 

  35. Cuzzocrea S, Salvemini D (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 71:290–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was partially funded by Fresenius Medical Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Jörres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, T.O., Witowski, J., Aufricht, C. et al. Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis. Pediatr Nephrol 23, 1537–1543 (2008). https://doi.org/10.1007/s00467-008-0834-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-0834-x

Keywords

Navigation