Skip to main content

Advertisement

Log in

A case of nephrogenic diabetes insipidus with a novel missense mutation in the AVPR2 gene

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

We describe a pediatric case of nephrogenic diabetes insipidus (NDI) with a novel missense mutation in the arginine vasopressin receptor 2 (AVPR2) gene. The patient, a 3-year-old boy, had polyuria (4357 ml/day, 7230 ml/m2/day) and polydipsia. Water deprivation testing demonstrated no decrease of urine volume, and urinary volume did not respond to subcutaneous injection of 0.1 U/kg pitressin. Molecular genetic analysis demonstrated that the patient had an AVPR2 missense mutation involving substitution of phenylalanine for tyrosine at position 205 (Y205F). It was also found that the patient’s mother was heterozygous for this Y205F mutation. Analysis of the intermolecular interaction of the Tyr-205 hydrogen group by molecular modeling showed that Tyr-205 was located in transmembrane domain (TM) 5, and that its hydroxy group formed a hydrogen bond with Leu-169 main-chain =O located in TM 4. The mutation of Tyr-205 to phenylalanine would cause loss of this hydrogen bond and decrease or change the interaction between these TM coils, thus affecting the ability of AVP to bind to the receptor. According to this molecular model of AVPR2, the Y205F mutation would cause nephrogenic diabetes insipidus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bichet DG, Razi M, Lonergan M, Arthus MF, Papukna V, Kortas C, Barjon JN (1988) Hemodynamic and coagulation responses to 1-desamino [8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318:881–887

    Article  CAS  PubMed  Google Scholar 

  2. Bichest DG, Razi M, Arthus MF, Lonergan M, Tittley P, Smiley RK, Rock G, Hirsch DJ (1989) Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Kidney Int 36:859–866

    Article  Google Scholar 

  3. Bichet DG, Hendy GN, Lonergen M, Arthus MF, Ligier S, Pausova Z, Kluge R, Zingg H, Saenger P, Oppenheimer E, Hirsch DJ, Gilgenkrantz S, Salles JP, Oberle I, Mandel JL, Gregory MC, Fujiwara TM, Morgan K, Scriver CR (1992) X-linked nephrogenic diabetes insipidus: from the ship Hopewell to RFLP studies. Am J Hum Genet 51:1089–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  4. van den Ouweland AM, Knoop MT, Knoers VV, Markslag PW, Rocchi M, Warren ST, Ropers HH, Fahrenholz F, Monnens LA, van Oost BA (1992) Colocalization of the gene for nephrogenic diabetes insipidus (DIR) and the vasopressin type 2 receptor gene (AVPR2) in the Xq28 region. Genomics 13:1350–1352

    Article  PubMed  Google Scholar 

  5. Jans DA, van Oost BA, Ropers HH, Fahrenholz F (1990) Derivatives of somatic cell hybrids which carry the human gene locus for nephrogenic diabetes insipidus (NDI) express functional vasopressin renal V2-type receptors. J Biol Chem 265:15379–15382

    CAS  PubMed  Google Scholar 

  6. Birnbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosentahal W (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335

    Article  CAS  PubMed  Google Scholar 

  7. Birnbaumer M (2000) Vasopressin receptors. Trends Endocrinol Metab 11:406–410

    Article  CAS  PubMed  Google Scholar 

  8. Miyakoshi M, Kamoi K, Uchida S, Sasaki S (2003) A case of a novel mutant vasopressin receptor-dependent nephrogenic diabetes insipidus with bilateral non-obstructive hydronephrosis in a middle aged man. Endocr J 50:809–814

    Article  CAS  PubMed  Google Scholar 

  9. Bichet DG, Arthus MF, Lonergen M, Hendy GN, Paradis AJ, Fujiwara TM, Morgan K, Gregory MC, Rosenthal W, Didwania A, Antaramian A, Birnbaumer M (1993) X-linked nephrogenic diabetes insipidus mutations in North America and the Hopwell hypothesis. J Clin Invest 92:1262–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–512

    Article  CAS  Google Scholar 

  11. Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  12. Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational parameters for intermolecular interactions. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  13. Halgren TA (1996) Merck molecular force. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615

    CAS  Google Scholar 

  14. Halgren TA (1996) Merck molecular field. V. Extension of MMFF94 using experimental data, additional computational data, and experimental rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  15. Vargas-Poussou R, Forestier L, Dautzenberg MD, Niaudet P, Dechaux M, Antignac C (1997) Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 8:1855–1862

    CAS  PubMed  Google Scholar 

  16. Robery S, Antush MJ, Bennett RL, Schoof JM, Scott CR (1994) Heterogenous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am J Hum Genet 55:266–277

    Google Scholar 

  17. Wildin RS (1996) V2 vasopressin receptor mutation Y205C causing nephrogenic diabetes insipidus retains partial function in vitro. Pediatr Res 39(4, pt 2):150A

    Article  Google Scholar 

  18. Hemosilla R, Oueslati M, Donalies U, Schönenberger E, Krause E, Oksche A, Rosenthal W, Schlein R (2004) Disease-causing V2 vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic 5:993–1005

    Article  Google Scholar 

  19. Yokoyama K, Yamauchi A, Izumi M, Itoh T, Ando A, Imai E, Kamada T, Ueda N (1996) A low-affinity vasopressin V2-receptor gene in a kindred with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 7:410–414

    CAS  PubMed  Google Scholar 

  20. Postina R, Ufer E, Pfeiffer R, Knoers NVAM, Fahrenholz F (2000) Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus. Mol Cell Endocrinol 164:31–39

    Article  CAS  PubMed  Google Scholar 

  21. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  CAS  PubMed  Google Scholar 

  22. Thibonner M, Coles P, Conarty DM, Plesnicher CL, Shoham M (2000) A molecular model of agonist and nonpeptide antagonist binding to the human V1 vascular vasopressin receptor. J Pharmacol Exp Ther 294:195–203

    Google Scholar 

  23. Schülein R, Zühlke K, Krause G, Rosenthal W (2001) Functional rescue of the nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutants G185C and R202C by a second site suppressor mutation. J Biol Chem 276:8384–8392

    Article  PubMed  Google Scholar 

  24. Macion-Dazard R, Callahan N, Xu Z, Wu N, Thibonnier M, Shoham M (2005) Mapping the binding site of six nonpeptide, antagonists to the human V2-renal vasopressin receptor. J Pharmacol Exp Ther 316:564–571

    Article  PubMed  Google Scholar 

  25. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  26. Susarz MJ, Suzarz R, Ciarkowski J (2006) Investigation of mechanism of desmopressin in binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: molecular dynamics simulation of the agonist-bound state in the membrane-aqueous system. Biopolymers 81:321–338

    Article  Google Scholar 

  27. Knoers NVAM, Monnens LLAH (1999) Nephrogenic diabetes insipidus. Semin Nephrol 19:344–352

    CAS  PubMed  Google Scholar 

  28. Knoers NVAM, Deen PMT (2001) Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol 16:1146–1152

    Article  CAS  PubMed  Google Scholar 

  29. Mouillac B, Chini B, Balestre MN, Elands J, Kallmeyer ST, Hoflack J, Hibert M, Jard S, Barberis C (1995) The binding site of neuropeptide vasopressin V1a receptor. J Biol Chem 270:25771–25777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Professor Hideyuki Hayashi, Department of Biochemistry, Osaka Medical College, for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ashida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashida, A., Yamamoto, D., Nakakura, H. et al. A case of nephrogenic diabetes insipidus with a novel missense mutation in the AVPR2 gene. Pediatr Nephrol 22, 670–673 (2007). https://doi.org/10.1007/s00467-006-0388-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0388-8

Keywords

Navigation