Skip to main content

Advertisement

Log in

A mechanistic approach to inherited polycystic kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

There are approximately six and a half million people, of the estimated world population of six billion, with inherited polycystic kidney disease. Polycystic kidney diseases have a broad spectrum of associated findings that distinguish and define them as specific disease states. The dysregulation of renal tubular epithelial cell biology, including cell polarity, cell signaling, proliferation and apoptosis, basement membrane and matrix abnormalities, and fluid transport, has been postulated to contribute to cystogenesis. Evidence is currently accumulating that supports an association of the primary cilium and basal body, as well as the focal adhesion assembly, with polycystic kidney diseases. Renal cystogenesis may be the result of a disruption of a critical feedback loop that regulates tissue morphology based on the epithelial cell environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci USA 68:820–823

    Google Scholar 

  2. Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892

    CAS  PubMed  Google Scholar 

  3. Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mattaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletky S et al. (1987) Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479–1484

    CAS  PubMed  Google Scholar 

  4. Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV (1987) Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83–88

    Google Scholar 

  5. Coto E, Sanz de Castro S, Aguado S, Alvarez J, Arias M, Menendez MJ, Lopez-Larrea C (1995) DNA microsatellite analysis of families with autosomal dominant polycystic kidney disease types 1 and 2: evaluation of clinical heterogeneity between both forms of the disease. J Med Genet 32:442–445

    CAS  PubMed  Google Scholar 

  6. Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St George-Hyslop P (2001) Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 68:355–363

    Article  CAS  PubMed  Google Scholar 

  7. Guay-Woodford LM (2003) Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol. 285:F1034–F1049

    Google Scholar 

  8. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, Adelsberg J van, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24:75–78

    Google Scholar 

  9. Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99:194–199

    CAS  PubMed  Google Scholar 

  10. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987

    CAS  PubMed  Google Scholar 

  11. Cook JA, Oliver K, Mueller RF, Sampson J (1996) A cross sectional study of renal involvement in tuberous sclerosis. J Med Genet 33:480–484

    CAS  PubMed  Google Scholar 

  12. Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, Nellist M, Gamble V, Harris PC, Sampson JR (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—a contiguous gene syndrome. Nat Genet 8:328–332

    Google Scholar 

  13. Sampson JR, Maheshwar MM, Aspinwall R, Thompson P, Cheadle JP, Ravine D, Roy S, Haan E, Berstein J, Harris PC (1997) Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet 61:843–851

    CAS  PubMed  Google Scholar 

  14. Zerres K, Mucher G, Becker J, Steinkamm C, Rudnik-Schoneborn S, Heikkila P, Rapola J, Salonen R, Germino GG, Onuchic L, Somlo S, Avner ED, Harman LA, Stockwin JM, Guay-Woodford LM (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144

    Article  CAS  PubMed  Google Scholar 

  15. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Google Scholar 

  16. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70:1305–1317

    Google Scholar 

  17. Zerres K, Mucher G, Bachner L, Deschennes G, Eggermann T, Kaariainen H, Knapp M, Lennert T, Misselwitz J, Muhlendahl KE von et al. (1994) Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat Genet 7:429–432

    Article  Google Scholar 

  18. Konrad M, Saunier S, Heidet L, Silbermann F, Benessy F, Calado J, Le Paslier D, Broyer M, Gubler MC, Antignac C (1996) Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet 5:367–371

    CAS  PubMed  Google Scholar 

  19. Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, Schuermann MJ, Becker A, Birkenhager R, Sudbrak R, Hennies HC, Nurnberg P, Hildebrandt F (2002) A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 71:1161–1167

    Article  CAS  PubMed  Google Scholar 

  20. Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL, Lupski JR (2001) Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293:2256–2259

    Article  CAS  PubMed  Google Scholar 

  21. Burghes AH, Vaessin HE, La Chapelle A de (2001) Genetics. The land between Mendelian and multifactorial inheritance. Science 293:2213–2214

    CAS  PubMed  Google Scholar 

  22. Farag TI, Teebi AS (1988) Bardet-Biedl and Laurence-Moon syndromes in a mixed Arab population. Clin Genet 33:78–82

    CAS  PubMed  Google Scholar 

  23. Huan Y, Adelsberg J van (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104:1459–1468

    CAS  PubMed  Google Scholar 

  24. Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A (2000) Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 149:111–124

    CAS  PubMed  Google Scholar 

  25. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168

    CAS  PubMed  Google Scholar 

  26. Lin HH, Yang TP, Jiang ST, Yang HY, Tang MJ (1999) Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney Int 55:168–178

    CAS  PubMed  Google Scholar 

  27. Burrow CR, Devuyst O, Li X, Gatti L, Wilson PD (1999) Expression of the beta2-subunit and apical localization of Na+-K+-ATPase in metanephric kidney. Am J Physiol 277:F391–F403

    CAS  PubMed  Google Scholar 

  28. Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79:1311–1323

    CAS  PubMed  Google Scholar 

  29. Wilson PD, Sherwood AC, Palla K, Du J, Watson R, Norman JT (1991) Reversed polarity of Na(+)-K(+)-ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am J Physiol 260:F420–F430

    CAS  PubMed  Google Scholar 

  30. Lebeau C, Hanaoka K, Moore-Hoon ML, Guggino WB, Beauwens R, Devuyst O (2002) Basolateral chloride transporters in autosomal dominant polycystic kidney disease. Pflugers Arch 444:722–731

    CAS  PubMed  Google Scholar 

  31. Veizis EI, Carlin CR, Cotton CU (2004) Decreased amiloride-sensitive Na+ absorption in collecting duct principal cells isolated from BPK ARPKD mice. Am J Physiol Renal Physiol 286:F244–F254

    CAS  PubMed  Google Scholar 

  32. Verani RR, Silva FG (1988) Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. Mod Pathol 1:457–463

    CAS  PubMed  Google Scholar 

  33. Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH (2004) Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10:363–364

    Google Scholar 

  34. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou Jr H, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    CAS  PubMed  Google Scholar 

  35. Potter EL (1972) Normal and abnormal development of the kidney. Yearbook Medical, Chicago

  36. Welling LW, Grantham JJ (1989) Cystic diseases of the kidney. In: Tisher CC, Brenner BM (eds) Renal pathology with clinical and functional correlations. Lippincott, New York, pp 1233–1277

  37. Heptinstall RH (1992) Pathology of the kidney, 4th edn. Little Brown and Company, Boston

  38. Wheatley DN (1995) Primary cilia in normal and pathological tissues. Pathobiology 63:222–238

    CAS  PubMed  Google Scholar 

  39. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  40. Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    Google Scholar 

  41. Praetorius HA, Frokiaer J, Nielsen S, Spring KR (2003) Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK cells. J Membr Biol 191:193–200

    CAS  PubMed  Google Scholar 

  42. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76

    CAS  PubMed  Google Scholar 

  43. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Google Scholar 

  44. Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso NF, Torres VE, Harris PC (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    Google Scholar 

  45. Wang S, Luo Y, Wilson PD, Witman GB, Zhou J (2004) The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    PubMed  Google Scholar 

  46. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    CAS  PubMed  Google Scholar 

  47. Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, Mah AK, Johnsen RC, Cavender JC, Lewis RA, Leroux MR, Beales PL, Katsanis N (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425:628–633

    CAS  PubMed  Google Scholar 

  48. Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149–156

    Google Scholar 

  49. Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE, Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP (1994) Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264:1329–1333

    CAS  PubMed  Google Scholar 

  50. Geng L, Burrow CR, Li HP, Wilson PD (2000) Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta 1535:21–35

    CAS  PubMed  Google Scholar 

  51. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    CAS  PubMed  Google Scholar 

  52. Streets AJ, Newby LJ, O’Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14:1804–1815

    CAS  PubMed  Google Scholar 

  53. Sweeney WE, Futey L, Frost P, Avner ED (1999) In vitro modulation of cyst formation by a novel tyrosine kinase inhibitor. Kidney Int 56:406–413

    CAS  PubMed  Google Scholar 

  54. Sweeney WE, Chen Y, Nakanishi K, Frost P, Avner ED (2000) Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 57:33–40

    CAS  PubMed  Google Scholar 

  55. Gattone VH 2nd, Wang X, Harris PC, Torres VE (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326

    Google Scholar 

Download references

Acknowledgements

The bibliography is restrained by space limitations, and the authors apologize to the scientists whose work has not been cited. The authors would like to thank Drs. Vincent Torres, Clark D. West, and Lisa Guay-Woodford for their careful review of the manuscript and constructive comments. This work was supported by the following grants to J.J.B. from NIH (DK61458 and CA103486), LAM Foundation, and TS Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Bissler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bissler, J.J., Dixon, B.P. A mechanistic approach to inherited polycystic kidney disease. Pediatr Nephrol 20, 558–566 (2005). https://doi.org/10.1007/s00467-004-1665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1665-z

Keywords

Navigation