Skip to main content

Advertisement

Log in

Parathyroid hormone increases cytosolic calcium in neonatal nephron through protein kinase C pathway

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In mammals, neonatal positive calcium balance is required for adequate growth. Parathyroid hormone (PTH) plays a central role in this process mainly through its action on the distal nephron. We studied the effect of PTH on cytosolic calcium in distal segments from neonatal rat kidney. PTH elicited a concentration-dependent increase in cytosolic calcium in neonatal distal nephron (EC50=0.5 nM) but not in proximal tubules. At similar PTH concentrations the response was higher in the neonatal than in the adult tubules. The response was associated with protein kinase C (PKC), since phorbol myristate acetate (100 nM) increased [Ca2+]i, and staurosporin, an inhibitor of PKC, decreased (10 nM) or suppressed (100 nM) the PTH effect. cAMP analogues did not change [Ca2+]i. The response was diminished in low external calcium (0.1 mM) and absent at zero calcium, indicating dependency on external calcium. Resting calcium decreased from 80±10.8 to 28.6±2.6 nM at zero [Ca2+]e. PTH and nifedipine increased cytosolic calcium in an additive fashion. We show for the first time that PTH increased cytosolic calcium in the distal nephron of neonatal kidney, in a concentration-dependent pattern and in association with PKC activation. Higher sensitivity of the neonatal tubule might facilitate absorption of this cation during the neonatal period, when growth requires a positive balance of calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karlen J, Rane S, Aperia A (1990) Tubular response to hormones is blunted in weanling rats. Acta Physiol Scand138:443–449

    Google Scholar 

  2. Sheu JN, Baum M, Harkins EW, Quigley R (1997) Maturational changes in rabbit renal cortical phospholipase A2 activity. Kidney Int 52:71–78

    CAS  PubMed  Google Scholar 

  3. Friedman PA (1999) Calcium transport in the kidney. Curr Opin Nephrol Hypertens 8:589–595

    Article  CAS  PubMed  Google Scholar 

  4. Morel F (1992) Methods in kidney physiology: past, present, and future. Annu Rev Physiol 54:1–9

    Article  CAS  PubMed  Google Scholar 

  5. Morel F (1981) Sites of hormone action in the mammalian nephron. Am J Physiol 240:F159–F164

    CAS  PubMed  Google Scholar 

  6. Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    CAS  PubMed  Google Scholar 

  7. Reyes JL, Roch-Ramel F, Besseghir K (1987) Net sodium and water movements in the newborn rabbit collecting tubule: lack of modifications by indomethacin. Biol Neonate 51:212–216

    CAS  PubMed  Google Scholar 

  8. Blaehr H (1991) Human renal biopsies as source of cells for glomerular and tubular cell cultures. Scand J Urol Nephrol 25:287–295

    CAS  PubMed  Google Scholar 

  9. Vinay P, Gougoux A, Lemieux G (1981) Isolation of a pure suspension of rat proximal tubules. Am J Physiol 241:F403–F411

    CAS  PubMed  Google Scholar 

  10. Valencia L, Bidet M, Martial S, Sanchez E, Melendez E, Tauc M, Poujeol C, Martin D, Namorado MD, Reyes JL, Poujeol P (2001) Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture. Am J Physiol Cell Physiol 280:C1193–C1203

    CAS  PubMed  Google Scholar 

  11. Reyes JL, Lamas M, Martin D, Del Carmen NM, Islas S, Luna J, Tauc M, Gonzalez-Mariscal L (2002) The renal segmental distribution of claudins changes with development. Kidney Int 62:476–487

    Article  CAS  PubMed  Google Scholar 

  12. Georgiadis N, Kardasopoulos A, Bufidis T (1999) The evaluation of corneal graft tissue by the use of trypan blue. Ophthalmologica 213:8–11

    Article  CAS  PubMed  Google Scholar 

  13. Reale E, Luciano L (1967) Critical electron microscopical studies on the localization of activity of alkaline phosphatase in the main portion of the kidney of mice. Histochemie 8:302–314

    CAS  PubMed  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  16. Gesek FA, Friedman PA (1992) On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells. J Clin Invest 90:749–758

    CAS  PubMed  Google Scholar 

  17. Hoenderop JG, De Pont JJ, Bindels RJ, Willems PH (1999) Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester- insensitive PKC isotype. Kidney Int 55:225–233

    Article  CAS  PubMed  Google Scholar 

  18. Reyes JL, Nava E, Namorado MC (1992) Receptor-mediated effect of a synthetic thromboxane-analogue on cytosolic calcium in isolated proximal tubules. Prostaglandins 44:145–154

    Article  CAS  PubMed  Google Scholar 

  19. Bouhtiauy I, Lajeunesse D, Brunette MG (1991) The mechanism of parathyroid hormone action on calcium reabsorption by the distal tubule. Endocrinology 128:251–258

    CAS  PubMed  Google Scholar 

  20. Bindels RJ, Dempster JA, Ramakers PL, Willems PH, Os CH van (1993) Effect of protein kinase C activation and down-regulation on active calcium transport. Kidney Int 43:295–300

    CAS  PubMed  Google Scholar 

  21. Champigneulle A, Siga E, Vassent G, Imbert-Teboul M (1997) Relationship between extra- and intracellular calcium in distal segments of the renal tubule. Role of the Ca2+ receptor RaKCaR. J Membr Biol 156:117–129

    Article  CAS  PubMed  Google Scholar 

  22. Iwata M, Herrington J, Zager RA (1995) Protein synthesis inhibition induces cytoresistance in cultured human proximal tubular (HK-2) cells. Am J Physiol 268:F1154–F1163

    CAS  PubMed  Google Scholar 

  23. Gibney GT, Zhang JH, Douglas RM, Haddad GG, Xia Y (2002) Na(+)/Ca(2+) exchanger expression in the developing rat cortex. Neuroscience 112:65–73

    Article  CAS  Google Scholar 

  24. Prakash YS, Seckin I, Hunter LW, Sieck GC (2002) Mechanisms underlying greater sensitivity of neonatal cardiac muscle to volatile anesthetics. Anesthesiology 96:893–906

    CAS  PubMed  Google Scholar 

  25. Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 268:F784–F791

    CAS  PubMed  Google Scholar 

  26. Johnson V, Spitzer A (1986) Renal reabsorption of phosphate during development: whole-kidney events. Am J Physiol 251:F251–F256

    CAS  PubMed  Google Scholar 

  27. Spitzer A, Barac-Nieto M (2001) Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol 16:763–771

    Article  CAS  PubMed  Google Scholar 

  28. Bourdeau JE, Eby BK (1990) cAMP-stimulated rise of [Ca2+]i in rabbit connecting tubules: role of peritubular Ca. Am J Physiol 258:F751–F755

    CAS  PubMed  Google Scholar 

  29. Lau K, Bourdeau JE (1995) Parathyroid hormone action in calcium transport in the distal nephron. Curr Opin Nephrol Hypertens 4:55–63

    CAS  PubMed  Google Scholar 

  30. Linarelli LG (1972) Newborn urinary cyclic AMP and developmental renal responsiveness to parathyroid hormone. Pediatrics 50:14–23

    CAS  PubMed  Google Scholar 

  31. Feng JQ, Clark NB (1994) Renal responses to parathyroid hormone in young chickens. Am J Physiol 267:R295–R302

    CAS  PubMed  Google Scholar 

  32. Chattopadhyay N, Baum M, Bai M, Riccardi D, Hebert SC, Harris HW, Brown EM (1996) Ontogeny of the extracellular calcium-sensing receptor in rat kidney. Am J Physiol 271:F736–F743

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

This study was partially supported by a grant from the Program ECOS-ANUIES for scientific collaboration France-Mexico (Project M96-B02). Dr. Laura Valencia was a recipient of a postgraduate fellowship from Secretaría de Educación Pública, México. The authors gratefully acknowledge the critical review of this material by Dr. M. Cereijido from the Department of Physiology and Biophysics at the Research Center for Advanced Studies. We also acknowledge the technical assistance of Gerardo Sierra and the secretarial support of Elvia Hernandez. Partial support of Conacyt 334511M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Reyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, L., Melendez, E., Namorado, M.C. et al. Parathyroid hormone increases cytosolic calcium in neonatal nephron through protein kinase C pathway. Pediatr Nephrol 19, 1093–1101 (2004). https://doi.org/10.1007/s00467-004-1542-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-004-1542-9

Keywords

Navigation