Skip to main content
Log in

Ontogeny of water transport in the rabbit proximal tubule

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Water transport across cell membranes is a fundamental biological problem. In the kidney, many nephron segments have mechanisms for transporting large quantities of water with minimal energy input. The proximal tubule reabsorbs two-thirds of the glomerular filtrate with a small transepithelial osmotic gradient as the driving force. In the adult proximal tubule, this is accomplished by the expression of aquaporin 1 (AQP1), the water channel located on the apical and basolateral membranes of the proximal tubule. The neonatal tubule has a much lower expression of AQP1, yet can still transport water with a small osmotic gradient. Thus, tubule properties other than AQP1 expression must allow for this to occur. There are two primary differences that account for this unexpectedly high osmotic water permeability of the neonatal proximal tubule. First, the lipid membrane of the neonatal tubule is more fluid than the adult tubule and therefore a larger fraction of the water can pass through the lipid bilayer. The second property is the fact that the neonatal tubule cells have a smaller cell volume, and thus, the intracellular compartment provides less resistance for the movement of water. This review will discuss postnatal maturation of proximal tubule water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. John Wiley&Sons-Interscience, New York, NY, pp 93–151

  2. Verkman AS (1989) Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol 257:C837–C850

    CAS  PubMed  Google Scholar 

  3. Verkman AS, Van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J (1996) Water transport across mammalian cell membranes. Am J Physiol 270:C12–C30

    CAS  PubMed  Google Scholar 

  4. Berry CA (1983) Water permeabilities and pathways in the proximal tubule. Am J Physiol 245:F279–F294

    CAS  PubMed  Google Scholar 

  5. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    CAS  PubMed  Google Scholar 

  6. Knepper MA, Wade JB, Terris J, Ecelbarger CA, Marples D, Mandon B, Chou CL, Kishore BK, Nielsen S (1996) Renal aquaporins. Kidney Int 49:1712–1717

    CAS  PubMed  Google Scholar 

  7. Nielsen S, Fror J, Knepper MA (1998) Renal aquaporins: key roles in water balance and water balance disorders. Curr Opin Nephrol Hypertens 7:509–516

    CAS  PubMed  Google Scholar 

  8. Nielsen S, Marples D, Frokiaer J, Knepper M, Agre P (1996) The aquaporin family of water channels in kidney: an update on physiology and pathophysiology of aquaporin-2. Kidney Int 49:1718–1723

    CAS  PubMed  Google Scholar 

  9. Lee MD, King LS, Agre P (1997) The aquaporin family of water channel proteins in clinical medicine. Medicine (Baltimore) 76:141–156

  10. Nielsen S, Agre P (1995) The aquaporin family of water channels in kidney. Kidney Int 48:1057–1068

    CAS  PubMed  Google Scholar 

  11. Sabolic I, Valenti G, Verbavatz J-M, Van Hoek AN, Verkman AS, Ausiello DA, Brown D (1992) Localization of the CHIP28 water channel in rat kidney. Am J Physiol 263:C1225–C1233

    CAS  PubMed  Google Scholar 

  12. Andreoli TE, Schafer JA, Troutman SL (1978) Perfusion rate-dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int 14:263–269

    CAS  PubMed  Google Scholar 

  13. Schafer JA, Patlak CS, Troutman SL, Andreoli TE (1978) Volume absorption in the pars recta. II. Hydraulic conductivity coefficient. Am J Physiol 234:F340–F348

    CAS  PubMed  Google Scholar 

  14. Preisig PA, Berry CA (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol 249:F124–F131

    CAS  PubMed  Google Scholar 

  15. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664

    Article  CAS  PubMed  Google Scholar 

  16. Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A 90:4500–4504

    CAS  PubMed  Google Scholar 

  17. Horster M, Larsson L (1975) Mechanism of fluid absorption during proximal tubule development. Kidney Int 10:348–363

    Google Scholar 

  18. Quigley R, Baum M (1996) Developmental changes in rabbit juxtamedullary proximal convoluted tubule water permeability. Am J Physiol 271:F871–F876

    CAS  PubMed  Google Scholar 

  19. Quigley R, Harkins EW, Thomas PJ, Baum M (1998) Maturational changes in rabbit renal brush border membrane vesicle osmotic water permeability. J Membr Biol 164:177–185

    Article  CAS  PubMed  Google Scholar 

  20. Mulder J, Haddad MN, Vernon K, Baum M, Quigley R (2003) Hypothyroidism increases osmotic water permeability (Pf) in the developing renal brush border membrane. Pediatr Res (in press)

  21. Mulder J, Haddad MN, Baum M, Quigley R (2001) Glucocorticoids increase osmotic water permeability in neonatal proximal tubule brush border membrane. J Am Soc Nephrol 12:20A

    Google Scholar 

  22. Arar M, Levi M, Baum M (1994) Maturational effects of glucocorticoids on neonatal brush-border membrane phosphate transport. Pediatr Res 35:474–478

    CAS  PubMed  Google Scholar 

  23. Schwarz SM, Ling SD, Hostetler B, Draper JP, Watkins JB (1984) Lipid composition and membrane fluidity in the small intestine of the developing rabbit. Gastroenterology 86:1544–1551

    CAS  PubMed  Google Scholar 

  24. Schwarz SM, Hostetler B, Ling S, Mone M, Watkins JB (1985) Intestinal membrane lipid composition and fluidity during development in the rat. Am J Physiol 248:G200–G207

    CAS  PubMed  Google Scholar 

  25. Quigley R, Gupta N, Lisec A, Baum M (2000) Maturational changes in rabbit renal basolateral membrane vesicle osmotic water permeability. J Membr Biol 174:53–58

    Article  CAS  PubMed  Google Scholar 

  26. Quigley R, Baum M (2002) Water transport in neonatal and adult rabbit proximal tubules. Am J Physiol Renal Physiol 283:F280–F285

    CAS  PubMed  Google Scholar 

  27. Berry CA (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am J Physiol 249:F729–F738

    CAS  PubMed  Google Scholar 

  28. Jacobson HR, Kokko JP, Seldin DW, Holmberg C (1982) Lack of solvent drag of NaCl and NaHCO3 in rabbit proximal tubules. Am J Physiol 243:F342–F348

    CAS  PubMed  Google Scholar 

  29. Quigley R, Lisec A, Baum M (2001) Ontogeny of rabbit proximal tubule urea permeability. Am J Physiol Regul Integr Comp Physiol 280:R1713–R1718

    CAS  PubMed  Google Scholar 

  30. Evan AP, Gattone II, Schwartz GJ (1983) Development of solute transport in rabbit proximal tubule. II. Morphologic segmentation. Am J Physiol 245:F391–F407

    CAS  PubMed  Google Scholar 

  31. Gupta N, Tarif SR, Seikaly M, Baum M (2001) Role of glucocorticoids in the maturation of the rat renal Na+/H+ antiporter (NHE3). Kidney Int 60:173–181

    Article  CAS  PubMed  Google Scholar 

  32. Shah M, Quigley R, Baum M (2000) Maturation of proximal straight tubule NaCl transport: role of thyroid hormone. Am J Physiol Renal Physiol 278:F596–F602

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Diabetes and Digestive and Kidney Diseases grants K08-DK02232 (R.Q.) and RO1-DK41612 (M.B.). J. Mulder was supported by the Rijksuniversiteit Groningen, the Netherlands and the Dutch Kidney Foundation. We wish to thank Laurel Johnson for her able secretarial assistance and Vangipuram Dwarakanath and Sumana Chakravarty for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Quigley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quigley, R., Mulder, J. & Baum, M. Ontogeny of water transport in the rabbit proximal tubule. Pediatr Nephrol 18, 1089–1094 (2003). https://doi.org/10.1007/s00467-003-1241-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1241-y

Keywords

Navigation