Skip to main content
Log in

Ontogeny of the mammalian kidney: expression of aquaporins 1, 2, 3, and 4

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Determining the expression and functions of aquaporins (AQPs) in the adult kidney has generated important information about the roles of this protein family in the renal regulation of water homeostasis. However, limited information describes the expression of AQPs in fetal kidneys, and most reports on fetal renal AQPs originate from animal studies. Although there are the maturation and regulation of the renal-concentrating mechanism, the ways in which changes in the expression of AQPs contribute to the formation of urine during the perinatal period remain unclear.

Data sources

This review summarizes current knowledge about the spatial and temporal expression patterns of AQP1, AQP2, AQP3, and AQP4 in the fetal and postnatal kidneys in different animal species and in human beings.

Results

AQP1 and AQP2 expression can be detected earlier in gestation in human beings and sheep compared with mice and rats. AQP1 expression is detected earlier in the proximal tubules than the expression of AQP2, AQP3, and AQP4 in the collecting ducts.

Conclusion

Further studies investigating the regulation of AQPs during kidney development may provide insights into normal water-handling mechanisms and the pathophysiology of fetal kidneys, which may determine new directions for the clinical treatment of kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agre P, Saboori AM, Asimos A, Smith BL. Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem 1987;262:17497–17503.

    CAS  PubMed  Google Scholar 

  2. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993;265:F463–F476.

    CAS  PubMed  Google Scholar 

  3. Saparov SM, Liu K, Agre P, Pohl P. Fast and selective ammonia transport by aquaporin-8. J Biol Chem 2007;282:5296–5301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 2007;282:1183–1192.

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 2002;277:39873–39879.

    Article  CAS  PubMed  Google Scholar 

  6. Liu H, Wintour EM. Aquaporins in development — a review. Reprod Biol Endocrinol 2005;3:18.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin Exp Nephrol 2009;13:107–117.

    Article  CAS  PubMed  Google Scholar 

  8. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, et al. Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 2007;1768:688–693.

    Article  CAS  PubMed  Google Scholar 

  9. Ishibashi K. Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 2006;1758:989–993.

    Article  CAS  PubMed  Google Scholar 

  10. Magni F, Chinello C, Raimondo F, Mocarelli P, Kienle MG, Pitto M. AQP1 expression analysis in human diseases: implications for proteomic characterization. Expert Rev Proteomics 2008;5:29–43.

    Article  CAS  PubMed  Google Scholar 

  11. Moeller HB, Olesen ET, Fenton RA. Regulation of the water channel aquaporin-2 by posttranslational modification. Am J Physiol Renal Physiol 2011;300:F1062–F1073.

    Article  CAS  PubMed  Google Scholar 

  12. Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, et al. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 2004;279:2975–2983.

    Article  CAS  PubMed  Google Scholar 

  13. Parreira KS, Debaix H, Cnops Y, Geffers L, Devuyst O. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability. Pflugers Arch 2009;458:745–759.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zelenina M, Zelenin S, Aperia A. Water channels (aquaporins) and their role for postnatal adaptation. Pediatr Res 2005;57:47R–53R.

    Article  PubMed  Google Scholar 

  15. Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002;82:205–244.

    CAS  PubMed  Google Scholar 

  16. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 1998;95:9660–9664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Chou CL, Knepper MA, Hoek AN, Brown D, Yang B, Ma T, et al. Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Invest 1999;103:491–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 1998;273:4296–4299.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon TH, Nielsen J, Møller HB, Fenton RA, Nielsen S, Frøkiaer J. Aquaporins in the kidney. Handb Exp Pharmacol 2009;190:95–132.

    Article  CAS  PubMed  Google Scholar 

  20. Vallon V, Verkman AS, Schnermann J. Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol Renal Physiol 2000;278:F1030–F1033.

    CAS  PubMed  Google Scholar 

  21. Rojek A, Füchtbauer EM, Kwon TH, Frøkiaer J, Nielsen S. Severe urinary concentrating defect in renal collecting ductselective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 2006;103:6037–6042.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Schrier RW. Body water homeostasis: clinical disorders of urinary dilution and concentration. J Am Soc Nephrol 2006;17:1820–1832.

    Article  CAS  PubMed  Google Scholar 

  23. Sabolić I, Katsura T, Verbavatz JM, Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 1995;143:165–175.

    Article  PubMed  Google Scholar 

  24. Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Féraille E. Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol 2005;16:1571–1582.

    Article  CAS  PubMed  Google Scholar 

  25. Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, et al. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 1995;269:F663–F672.

    CAS  PubMed  Google Scholar 

  26. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 1995;269:F775–F785.

    CAS  PubMed  Google Scholar 

  27. Nørregaard R, Madsen K, Hansen PB, Bie P, Thavalingam S, Frøkiær J, et al. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice. Am J Physiol Renal Physiol 2011;301:F1303–F1313.

    Article  PubMed  Google Scholar 

  28. Holmes RP. The role of renal water channels in health and disease. Mol Aspects Med 2012;33:547–552.

    Article  CAS  PubMed  Google Scholar 

  29. Zeuthen T, Klaerke DA. Transport of water and glycerol in aquaporin 3 is gated by H(+). J Biol Chem 1999;274:21631–21636.

    Article  CAS  PubMed  Google Scholar 

  30. Zelenina M, Bondar AA, Zelenin S, Aperia A. Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J Biol Chem 2003;278:30 037–30 043.

    Article  CAS  Google Scholar 

  31. Agarwal SK, Gupta A. Aquaporins: The renal water channels. Indian J Nephrol 2008;18:95–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci USA 2000;97:4386–4391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chou CL, Ma T, Yang B, Knepper MA, Verkman AS. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 1998;274:C549–C954.

    CAS  PubMed  Google Scholar 

  34. Moritz KM, Wintour EM. Functional development of the meso- and metanephros. Pediatr Nephrol 1999;13:171–178.

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto T, Sasaki S, Fushimi K, Ishibashi K, Yaoita E, Kawasaki K, et al. Expression of AQP family in rat kidneys during development and maturation. Am J Physiol 1997;272:F198–F204.

    CAS  PubMed  Google Scholar 

  36. Wintour EM, Earnest L, Alcorn D, Butkus A, Shandley L, Jeyaseelan K. Ovine AQP1: cDNA cloning, ontogeny, and control of renal gene expression. Pediatr Nephrol 1998;12:545–553.

    Article  CAS  PubMed  Google Scholar 

  37. Wintour EM, Moritz KM. Comparative aspects of fetal renal development. Equine Vet J Suppl 1997;29:51–58.

    Article  Google Scholar 

  38. Butkus A, Alcorn D, Earnest L, Moritz K, Giles M, Wintour EM. Expression of aquaporin-1 (AQP1) in the adult and developing sheep kidney. Biol Cell 1997;89:313–320.

    Article  CAS  PubMed  Google Scholar 

  39. Smith BL, Baumgarten R, Nielsen S, Raben D, Zeidel ML, Agre P. Concurrent expression of erythroid and renal aquaporin CHIP and appearance of water channel activity in perinatal rats. J Clin Invest 1993;92:2035–2041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bondy C, Chin E, Smith BL, Preston GM, Agre P. Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 1993;90:4500–4504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Baum MA, Ruddy MK, Hosselet CA, Harris HW. The perinatal expression of aquaporin-2 and aquaporin-3 in developing kidney. Pediatr Res 1998;43:783–790.

    Article  CAS  PubMed  Google Scholar 

  42. Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 2001;98:5649–5654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kim J, Kim WY, Han KH, Knepper MA, Nielsen S, Madsen KM. Developmental expression of aquaporin 1 in the rat renal vasculature. Am J Physiol 1999;276:F498–F509.

    CAS  PubMed  Google Scholar 

  44. Butkus A, Earnest L, Jeyaseelan K, Moritz K, Johnston H, Tenis N, et al. Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr Nephrol 1999;13:379–390.

    Article  CAS  PubMed  Google Scholar 

  45. Devuyst O, Burrow CR, Smith BL, Agre P, Knepper MA, Wilson PD. Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am J Physiol 1996;271:F169–F183.

    CAS  PubMed  Google Scholar 

  46. Agre P, Smith BL, Baumgarten R, Preston GM, Pressman E, Wilson P, et al. Human red cell Aquaporin CHIP. II. Expression during normal fetal development and in a novel form of congenital dyserythropoietic anemia. J Clin Invest 1994;94:1050–1058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tsukahara H, Hata I, Sekine K, Miura M, Hata K, Fujii Y, et al. Urinary excretion of aquaporin-2 in term and preterm infants. Early Hum Dev 1998;51:31–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikke Nørregaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Wen, JG., Frøkiær, J. et al. Ontogeny of the mammalian kidney: expression of aquaporins 1, 2, 3, and 4. World J Pediatr 10, 306–312 (2014). https://doi.org/10.1007/s12519-014-0508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-014-0508-7

Key words

Navigation