Skip to main content

Advertisement

Log in

Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract.

Some children with idiopathic hypercalciuria (IH) develop bone alterations at some stage of the disease. The aims of this study were to evaluate bone mass in 88 children with IH (G1) at the time of diagnosis and to compare the findings with data for a control group of 29 normal children (G2). Kidney and bone metabolism markers were measured in both groups, and bone densitometry was performed. Serum alkaline phosphatase, intact parathyroid hormone, urinary calcium and uric acid were significantly higher in G1, whereas urinary volume and urinary citrate excretion were lower. The following densitometric parameters were significantly lower in G1: (1) lumbar spine (L2-L4) bone mineral density (BMD), bone mineral content (BMC), BMC corrected for height and for width of the vertebra, volumetric BMD (BMDvol), and Z score; (2) whole-body BMD; (3) femoral neck BMD. Lumbar spine BMDvol was reduced (osteopenia) in 35% of the patients compared with G2. N telopeptide, a urinary marker of bone resorption, was significantly higher in G1 than in G2, and was negatively correlated with lumbar spine BMD and BMDvol. Children with urinary lithiasis or idiopathic hyperuricosuria associated with IH showed no significant differences in bone metabolism compared with children without these associations. We conclude that (1) there is an altered bone metabolism in IH, with osteopenia already present at diagnosis in 35% of the patients; (2) N telopeptide is one of the most useful markers of bone alterations in IH, especially at an early stage of the disease; (3) investigation of bone metabolism is necessary in IH to prevent future serious consequences such as osteoporosis and bone fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Heilberg IP, Martini LA, Szejnfeld VL, Carvalho AB, Draibe SA, Ajzen H, Ramos OL, Schor N (1994) Bone disease in calcium stone forming patients. Clin Nephrol 42:175–182

    CAS  PubMed  Google Scholar 

  2. García-Nieto V, Ferrández C, Monge M, Sequera M, Rodrigo MD (1997) Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol 11:578–583

    CAS  PubMed  Google Scholar 

  3. Perrone HC, Marone MMS, Bianco AC, Toporovski J, Malvestiti LF, Schor N (1995) Bone mineral density in hypercalciuric children: a 5-year follow-up (abstract), The 10th Congress of the International Pediatric Nephrology Association, Santiago, Chile, 27 Aug to 1 Sept

    Google Scholar 

  4. Fässler ALC, Bonjour JP (1995) Osteoporosis as a pediatric problem. Pediatr Clin North Am 42:811–824

    PubMed  Google Scholar 

  5. Carrascosa A, Gussynié M, Yeste D, Del Rio L, Audí L (1995) Bone mass acquisition during infancy, childhood and adolescence. Acta Paediatr [Suppl] 411:18–23

    Google Scholar 

  6. Pacifici R, Rothstein M, Rifas L, Lau KH, Baylink DJ, Avioli LV, Hruska K (1990) Increased monocyte interleukin-1 activity and decreased vertebral bone density in patients with fasting idiopathic hypercalciuria. J Clin Endocrinol Metab 71:138–145

    CAS  PubMed  Google Scholar 

  7. Weisinger JR, Alonzo E, Carlini RG, Paz-Martinez V, Martinis R, Bellorin-Font E (1998) Bone disease in hypercalciuria: a new form of osteodystrophy? Nephrol Dial Transplant 13 [Suppl 3]:88–90

  8. Filipponi P, Mannarelli C, Pacifici R, Grassi E, Moertti I, Tint S, Carlone C, Blass A, Morucci P, Hruska KA, Avioli LV (1988) Evidence for a prostaglandin-mediated bone resorptive mechanism in subjects with fasting hypercalciuria. Calcif Tissue Int 43:61–66

    CAS  PubMed  Google Scholar 

  9. Trinchieri A, Nespoli R, Rovera F, Ostini F, Vezzoli G, Zerbi S, Rubinacci A, Moro GL, Curro A (1995) Diet and bone mineral content in idiopathic calcium renal stone formers. Proceedings of Sixth European synposium on urolithiasis. 8–10 June, Stockholm. Tiselius, Stockholm 1:160

    Google Scholar 

  10. Bataille P, Achard JM, Fournier A, Boudailliez B, Westeel PF, el Esper N, Bergot C, Jans I, Lalau JD, Petit J (1991) Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int 39:1193–1205

    CAS  PubMed  Google Scholar 

  11. Marcondes E, Machado DVM, Setian N, Carrazza FR (1991) Crescimento e desenvolvimento. In: Marcondes E (ed) Pediatria Básica, 8th edn. Savier, São Paulo, pp 35–63

  12. Simkin PA, Hoover PL, Paxson CS, Wilson WF (1979) Uric acid excretion: quantitative assessment from spot, midmorning serum and urine samples. Ann Intern Med 91:44–47

    CAS  PubMed  Google Scholar 

  13. Shimizu T, Nishikawa M, Matsushige H (1990) The solubility of uric acid and monosodium urate in urine. Adv Exp Med Biol 253A:215–218

    Google Scholar 

  14. Tiselius HG (1980) Practical aspects of the handling of samples and evaluation of laboratory data. Scand J Urol Nephrol 53:105–108

    CAS  Google Scholar 

  15. Husain SM, Mughal Z, Williams G, Ward K, Smith CS, Dutton J, Fraser WD (1999) Urinary excretion of pyridinium crosslinks in healthy 4–10 year olds. Arch Dis Child 80:370–373

    CAS  PubMed  Google Scholar 

  16. Jacobs DS, Kasten BL, Demott WR (ed) (1990) Laboratory test handbook, 2nd edn. Williams and Wilkins, Baltimore

  17. Henry JB (1991) Clinical diagnosis and management by laboratory methods, 18th edn. Saunders, Philadelphia

  18. Dacie JV, Lewis SM (1991) Practical haematology, 7th edn. Churchill Livingstone, London

  19. Scariano JK, Walter EA, Glew RH, Hollis BW, Henry A, Ocheke I, Isichei CO (1995) Serum levels of the pyridinoline crosslinked carboxyterminal telopeptide of type I collagen (ICTP) and osteocalcin in rachitic children in Nigeria. Clin Biochem 28:541–545

    Article  CAS  PubMed  Google Scholar 

  20. Rauch FR, Stabrey A, Schönau E (1996) Appendix: reference values in pediatric osteology. In: Schönau E (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier Science, Amsterdam, pp 295–300

    Google Scholar 

  21. Greulich WW, Pyle SI (1993) The rationale and technique of assessing the developmental status of children from roentgenograms of hand and wrist. In: Radiographic atlas of skeletal development of hand and wrist, 2nd edn. Stanford University Press, Stanford

  22. Laursen EM, Molgaard C, Michaelsen KF, Koch C, Muller J (1999) Bone mineral status in 134 patients with cystic fibrosis. Arch Dis Child 81:235–240

    CAS  PubMed  Google Scholar 

  23. Kröger HPJ (1996) Measurement of bone mass and density in children. In: Schönau E (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier Science, Amsterdam, pp 103–108

    Google Scholar 

  24. Del Rio L, Carrascosa A, Pons F, Gussynié M, Yeste D, Domenech FM (1994) Bone mineral density of the lumbar spine in Caucasian Mediterranean Spanish children and adolescents: changes related to age, sex and puberty. Pediatr Res 35:362–366

    PubMed  Google Scholar 

  25. Thomas KA, Cook SD, Bennett JT, Whitecoud III TS, Rice JC (1991) Femoral neck and lumbar spine bone mineral densities in a normal population 3–20 years of age. J Pediatr Orthop 11:48–58

    CAS  PubMed  Google Scholar 

  26. Perrone HC, Ajzen H, Toporovski J, Schor N (1991) Metabolic disturbance as a cause of recurrent hematuria in children. Kidney Int 39:807–811

    Google Scholar 

  27. Heilberg IP, Schor N (1994) Litíase renal: fisiopatogenia e tratamento. J Bras Nefrol 16:125–133

    Google Scholar 

  28. Pak CY, Oata M, Lawrence EC, Snyder W (1974) The hypercalciurias. Causes, parathyroid functions, and diagnostic criteria. J Clin Invest 54:387–400

    CAS  PubMed  Google Scholar 

  29. Broadus AE, Lang R, Kliger AS (1981) The influence of calcium intake and the status of intestinal calcium absorption on the diagnostic utility of measurements of 24-hour cyclic adenosine 3',5'-monophosphate excretion. J Clin Endocrinol Metab 52:1085–1089

    CAS  PubMed  Google Scholar 

  30. Sutton RA, Walker VR (1980) Responses to hydrochlorothiazide and acetazolamide in patients with calcium stones. N Engl J Med 302:709–713

    CAS  PubMed  Google Scholar 

  31. Barros EJ, Santos DR dos, Boim MA, Pinheiro ME, Ajzen H, Ramos OL, Schor N (1986) Calciúria, sobrecarga de cálcio e AMP cíclico urinário na avaliação de pacientes com litíase cálcica. AMB Rev Assoc Med Bras 32:96–100

    CAS  PubMed  Google Scholar 

  32. Ejersted C, Andreassen TT, Hauge EM, Melsen F, Oxlund H (1995) Parathyroid hormone (1–34) increases vertebral bone mass, compressive strength, and quality in old rats. Bone 17:507–511

    Article  CAS  PubMed  Google Scholar 

  33. Boechat MI, Westra SJ, Van Dop C, Kaufman F, Gilzanz V, Roe TF (1996) Decreased cortical and increased cancellous bone in two children with primary hyperparathyroidism. Metabolism 45:76–81

    CAS  PubMed  Google Scholar 

  34. Gabay C, Ruedin P, Slosman D, Bonjour JP, Leski M, Rizzoli R (1993) Bone mineral density in patients with end-stage renal failure. Am J Nephrol 13:115–123

    CAS  PubMed  Google Scholar 

  35. Kruse K, Kracht U (1986) Evaluation of serum osteocalcin as an index of altered bone metabolism. Eur J Pediatr 145:27–33

    CAS  PubMed  Google Scholar 

  36. Hosking DH, Erickson SB, Van den Berg CJ, Wilson DM, Smith LH (1983) The stone clinic effect in patients with idiopathic calcium urolithiasis. J Urol 130:1115–1118

    CAS  PubMed  Google Scholar 

  37. Weaver CM, Peacock M, Martin BR, McCabe GP, Zhao J, Smith DL, Wastney ME (1997) Quantification of biochemical markers of bone turnover by kinetic measures of bone formation and resorption in young healthy females. J Bone Miner Res 12:1714–1720

    CAS  PubMed  Google Scholar 

  38. Kikushi T, Hashimoto N, Kawasaki T, Kataoka S, Takahashi H, Uchiyama M (1998) Plasma levels of carboxy terminal propeptide of type I procollagen and pyridinoline cross-linked telopeptide of type I collagen in healthy school children. Acta Paediatr 87:825–829

    Article  PubMed  Google Scholar 

  39. Kyd PA, De Vooght K, Kerkhoff F, Thomas E, Fairney A (1999) Clinical usefulness of biochemical resorption markers in osteoporosis. Ann Clin Biochem 36:483–491

    PubMed  Google Scholar 

  40. Longobardi S, Di Rella F, Pivonello R, Di Somma C, Klain M, Maurelli L, Scarpa R, Colao A, Merola B, Lombardi G (1999) Effects of two years of growth hormone (GH) replacement therapy on bone metabolism and mineral density in childhood and adulthood onset GH deficient patients. J Endocrinol Invest 22:333–339

    CAS  PubMed  Google Scholar 

  41. Taga M, Uemura T, Minaguchi H (1998) The effect of hormone replacement therapy in postmenopausal women on urinary C-telopeptide and N-telopeptide of type I collagen, new markers of bone resorption. J Endocrinol Invest 21:154–159

    CAS  PubMed  Google Scholar 

  42. Perrone HC, Lewin S, Langman CB, Toporovski J, Marone M, Schor N (1992) Bone effects of the treatment of children with absorptive hypercalciuria. Pediatr Nephrol 6:C115

    Google Scholar 

  43. Perrone HC, Marone MMS, Bianco AC, Toporovski J, Malvestiti LF, Schor N (1995) Bone mineral density in hypercalciuric children: a 5 year follow-up (abstract). The 10th Congress of the International Pediatric Nephrology Association, Santiago, Chile, 27 Aug to 1 Sept

    Google Scholar 

  44. Silva AMM (1995) Avaliação metabólica, histomorfométrica e do conteúdo mineral ósseo de pacientes portadores de nefrolitíase cálcica recorrente e hipercalciúria idiopática. Faculdade de Medicina da Universidade Federal de São Paulo, São Paulo, 101p (Tese de Doutorado)

  45. García-Nieto V, Navarro JF, Ferrández C (1998) Bone loss in children with idiopathic hypercalciuria. Nephron 78:341–342

    PubMed  Google Scholar 

  46. Freundlich J, Haimberg E, Bellorín-Font E, Weisinger JR (1999) Osteopenia in asymptomatic premenopausal mothers of children with idiopathic hypercalciuria (abstract). XXth International Congress of Nephrology, Buenos Aires, Argentina, 2–6 May, p 280

Download references

Acknowledgements.

This study was presented at the International Pediatric Nephrology Association Meeting in September 2001 at Seattle, USA. We thank Dr. José-Silvério Diniz for scientific support. This work was supported by the Pediatric Nephrology Unit, Faculty of Medicine (UFMG), Brazil. We also thank the following groups that played an important role in the development and performance of this study: (1) Pós-graduação UFMG; (2) CNPq; (3) Instituto de Patologia Clínica Hermes Pardini; (4) ECOAR Medicina Diagnóstica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Goretti Moreira Guimarães Penido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penido, MG.M.G., Lima, E.M., Marino, V.S.P. et al. Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol 18, 133–139 (2003). https://doi.org/10.1007/s00467-002-1036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-002-1036-6

Keywords

Navigation