Skip to main content
Log in

A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gurson AL Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction

  2. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15

    Article  Google Scholar 

  3. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17(4):389–407

    Article  Google Scholar 

  4. Tvergaard V (1982) Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids 30(6):399–425

    Article  Google Scholar 

  5. Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102(3):249–256

    Article  Google Scholar 

  6. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32(1):157–169

    Article  Google Scholar 

  7. Zhang KS, Bai JB, Francois D (2001) Numerical analysis of the influence of the lode parameter on void growth. Int J Solids Struct 38(32):5847–5856

    Article  Google Scholar 

  8. Kim J, Gao X, Srivatsan TS (2003) Modeling of crack growth in ductile solids: a three-dimensional analysis. Int J Solids Struct 40(26):7357–7374

    Article  Google Scholar 

  9. Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71(3):379–400

    Article  Google Scholar 

  10. Gao X, Kim J (2006) Modeling of ductile fracture: significance of void coalescence. Int J Solids Struct 43(20):6277–6293

    Article  Google Scholar 

  11. Malcher L, Pires FMA, de Sá JMAC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30–31:81–115

    Article  Google Scholar 

  12. Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75(11):3343–3366

    Article  Google Scholar 

  13. Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27(1):1

    Article  Google Scholar 

  14. Brunig M, Gerke S, Hagenbrock V (2013) Micro-mechanical studies on the effect of the stress triaxiality and the lode parameter on ductile damage. Int J Plast 50:49–65

    Article  Google Scholar 

  15. Brunig M, Gerke S, Hagenbrock V (2014) Stress-state-dependence of damage strain rate tensors caused by growth and coalescence of micro-defects. Int J Plast 63:49–63; (2014) Deformation Tensors in Material Modeling in Honor of Prof. Otto T, Bruhns

  16. Malcher L, Pires FMA, de Sá JMAC (2014) An extended gtn model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228

    Article  Google Scholar 

  17. Aravas N (1987) On the numerical integration of a class of pressure-dependent plasticity models. Int J Numer Methods Eng 24(7):1395–1416

    Article  Google Scholar 

  18. Steinmann P, Miehe C, Stein E (1994) Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials. Comput Mech 13(6):458–474

    Article  Google Scholar 

  19. de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications, 1st edn. Wiley, New York

  20. Mano A, Imai R, Miyamoto Y, Lu K, Katsuyama J, Li Y (2022) Improvement of the return mapping algorithm based on the implicit function theorem with application to ductile fracture analysis using the gtn model. Int J Press Vessel Pip 199:104700

    Article  Google Scholar 

  21. Wright M (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(1):39–56

    Article  MathSciNet  Google Scholar 

  22. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626

    Article  MathSciNet  Google Scholar 

  23. Scheunemann L, Nigro PSB, Schröder J, Pimenta PM (2020) A novel algorithm for rate independent small strain crystal plasticity based on the infeasible primal–dual interior point method. Int J Plast 124:1–19

    Article  Google Scholar 

  24. Scheunemann L, Nigro PSB, Schröder J (2021) Numerical treatment of small strain single crystal plasticity based on the infeasible primal–dual interior point method. Int J Solids Struct 232:111149

    Article  Google Scholar 

  25. Shintaku Y, Nakamura F, Tsutsumi S, Terada K (2022) An implicit solution for an elastic–plastic model with hardening rule depending on plastic strain range using a primal–dual interior point method. Trans JSCES. https://doi.org/10.11421/jsces.2022.20220001

  26. Shintaku Y, Nakamura F, Terada K (2023) A hybrid strategy blending primal–dual interior point and return mapping methods for a class of hypoelastic–plastic models with memory surface. Int J Numer Methods Eng 124(9):1991–2013. https://doi.org/10.1002/nme.7195

    Article  MathSciNet  Google Scholar 

  27. Inagaki K, Hashimoto G, Okuda H (2015) Interior point method based contact analysis algorithm for structural analysis of electronic device models. Mech Eng J 2(4):15–00146

    Google Scholar 

  28. Nigro PSB, Simões ET, Pimenta PM, Schröder J (2019) Model order reduction with Galerkin projection applied to nonlinear optimization with infeasible primal–dual interior point method. Int J Numer Methods Eng 120(12):1310–1348

  29. Hencky H (1933) The elastic behavior of vulcanized rubber. Rubber Chem Technol 6(2):217–224

    Article  Google Scholar 

  30. Chow CL, Lu TJ (1989) On evolution laws of anisotropic damage. Eng Fract Mech 34(3):679–701

    Article  Google Scholar 

  31. Lemaitre J, Desmorat R (2005) Engineering damage mechanics, 1st edn

  32. Brepols T, Wulfinghoff S, Reese S (2017) Gradient-extended two-surface damage-plasticity: micromorphic formulation and numerical aspects. Int J Plast 97:64–106

    Article  Google Scholar 

  33. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107(1):83–89

    Article  Google Scholar 

  34. Lemaitre J (1996) A course on damage mechanics

  35. Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833

    Article  Google Scholar 

  36. Bouby C, Morin L, Bignonnet F, Dormieux L, Kondo D (2023) On the thermodynamics consistency of Gurson’s model and its computational implications. Int J Solids Struct 279:112359

    Article  Google Scholar 

  37. Coussy O (2011) Mechanics and physics of porous solids. Wiley, New York

    Google Scholar 

  38. Yamashita H (1998) A globally convergent primal-dual interior point method for constrained optimization. Optim Methods Softw 10(2):443–469

    Article  MathSciNet  Google Scholar 

  39. Kami A, Dariani BM, Sadough Vanini A, Comsa DS, Banabic D (2015) Numerical determination of the forming limit curves of anisotropic sheet metals using gtn damage model. J Mater Process Technol 216:472–483

  40. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1(1):1–18

    Article  MathSciNet  Google Scholar 

  41. Kriegm RD (1975) A practical two surface plasticity theory. J Appl Mech Trans ASME 42(3):641–646

    Article  Google Scholar 

  42. Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833

    Article  MathSciNet  Google Scholar 

  43. Espeseth V, Morin D, Børvik T, Hopperstad OS (2023) A gradient-based non-local gtn model: explicit finite element simulation of ductile damage and fracture. Eng Fract Mech 289:109442

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP22H03602 and JP23K18458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Shintaku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Formulation for irreversible damage

Formulation for irreversible damage

As in Sect. 5.1, the maximization problem (63) subject to the inequality constraints (64) and (65) can be rewritten as

$$\begin{aligned} \underset{ \left\{ \varvec{\tau }, \; Y_i\; A \right\} }{\overset{}{\text {maximize}} }&\quad \varvec{\tau } :\tilde{\varvec{d}}^\textrm{p} + \sum _{i=1}^{2} Y_{i} \dot{f}_{i} - A \dot{\alpha } \nonumber \\&\quad + \mu ^\textrm{p}\log {s^\textrm{p}} + \sum _{i=1}^{2} \mu ^{\textrm{f}}_i\log {s^{\textrm{f}}_i} \end{aligned}$$
(A1)
$$\begin{aligned} \mathrm {subject\,to}&\quad \Phi ^\textrm{p}(\varvec{\tau },A) + s^\textrm{p} = 0 \end{aligned}$$
(A2)
$$\begin{aligned}&\quad \Phi ^{\textrm{f},(i)}_\mathrm {\sigma }(Y_i) + s^{\textrm{f}}_i = 0 \ (i=1, \, 2). \end{aligned}$$
(A3)

where \(\mu _{1}^\textrm{p}\) and \(\mu ^{\textrm{f}}_i\) are the duality gaps, and \(s^\textrm{p} > 0\) and \(s^{\textrm{f}}_i > 0\) are the slack variables. Then, the Lagrangian functional is defined as

$$\begin{aligned}&\mathcal {L}_\textrm{GTN}^\textrm{IP} \left( \varvec{\tau }, Y_i, A, \dot{\lambda }^\textrm{p}, \dot{\lambda }^\textrm{f}_i \right) \nonumber \\&\qquad = \varvec{\tau } : \tilde{\varvec{d}}^\textrm{p} + \sum _{i=1}^{2} Y_{i} \dot{f}_{i} - A \dot{\alpha } \nonumber \\&\qquad \ \ + \mu ^\textrm{p}\log {s^\textrm{p}} + \sum _{i=1}^{2} \mu ^{\textrm{f}}_i\log {s^{\textrm{f}}_i} \nonumber \\&\qquad \ \ -\dot{\lambda }^\textrm{p} \left( \Phi ^\textrm{p} (\varvec{\tau }, A)+s^\textrm{p}\right) \nonumber \\&\qquad \ \ -\sum _{i=1}^{2} \dot{\lambda }^\textrm{f}_i \left( \Phi ^{\textrm{f},(i)}_\mathrm {\sigma } (Y_i)+ s^{\textrm{f}}_i\right) . \end{aligned}$$
(A4)

where \(\dot{\lambda }^\textrm{p}\) and \(\dot{\lambda }^\textrm{f}_i\) are the Lagrange multipliers. The stationary point of this Lagrangian function can be achieved as

figure f

In the numerical algorithm that was presented in Sect. 5.3, the duality gaps \(\mu ^\textrm{p}\) and \(\mu ^{\textrm{f}}_i\) are gradually brought close to zero by the path-following method to obtained the above saddle point, while Eqs. (A5)–(A11) are numerically solved by the Newton’s method.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shintaku, Y., Inaoka, T. & Terada, K. A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02466-4

Keywords

Navigation