Skip to main content
Log in

Virtual clustering analysis for phase field model of quasi-static brittle fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we develop a Virtual Clustering Analysis method for a phase field model of brittle fracture. In addition to the strain/stress field, we treat the phase field variable via clusters as well, based on Green’s function of the governing Helmholtz equation. Around the crack path, we assign one cluster per cell. We detect the crack tip and recluster accordingly as the crack propagates. Three examples are presented to demonstrate the numerical efficiency of the proposed method, including either straight or curved crack, under tension or shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  Google Scholar 

  2. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  ADS  Google Scholar 

  3. Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bharali R, Larsson F, Jänicke R (2021) Computational homogenisation of phase-field fracture. Eur J Mech A Solids 88:104247

    Article  MathSciNet  Google Scholar 

  5. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  ADS  MathSciNet  Google Scholar 

  6. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MathSciNet  Google Scholar 

  7. Bourdin B, Marigo JJ, Maurini C, Sicsic P (2014) Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys Rev Lett 112:014301

    Article  ADS  PubMed  Google Scholar 

  8. Braides A (1998) Approximation of free-discontinuity problems. Springer verlag, Berlin

    Book  Google Scholar 

  9. Buliga M (1998) Energy minimizing brittle crack propagation. J Elast 52:201–238

    Article  MathSciNet  Google Scholar 

  10. Chen Y, Vasiukov D, Gélébart L, Park CH (2019) A FFT solver for variational phase-field modeling of brittle fracture. Comput Methods Appl Mech Eng 349:167–190

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen Y, Gélébart L, Marano A, Marrow J (2021) FFT phase-field model combined with cohesive composite voxels for fracture of composite materials with interfaces. Comput Mech 68:433–457

    Article  MathSciNet  Google Scholar 

  12. Cheng GD, Li XK, Nie YH, Li HY (2019) FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184

    Article  ADS  MathSciNet  Google Scholar 

  13. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  ADS  MathSciNet  Google Scholar 

  14. Geelen RJM, Liu YJ, Hu TC, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711

    Article  ADS  MathSciNet  Google Scholar 

  15. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  ADS  Google Scholar 

  16. Han XX, Xu CH, Xie WH, Meng SH (2019) Multiscale computational homogenization of woven composites from microscale to mesoscale using data-driven self-consistent clustering analysis. Compos Struct 220:760–768

    Article  Google Scholar 

  17. He CW, Gao JY, Li HY, Ge JR, Chen YF, Liu JP, Fang DN (2020) A data-driven self-consistent clustering analysis for the progressive damage behavior of 3D braided composites. Compos Struct 249:112471

    Article  Google Scholar 

  18. Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Meth Eng 93:276–301

    Article  MathSciNet  Google Scholar 

  19. Hu TC, Guilleminot J, Dolbow JE (2020) A phase-field model of fracture with frictionless contact and random fracture properties: Application to thin-film fracture and soil desiccation. Comput Methods Appl Mech Eng 368:113106

    Article  ADS  MathSciNet  Google Scholar 

  20. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Article  Google Scholar 

  21. Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Proceedings of fifth world congress on computational mechanics, WCCM V, Vienna University of Technology, Austria

  22. Jirásek M, Zimmermann T (1998) Analysis of rotating crack model. J Eng Mech 124:842–851

    Google Scholar 

  23. Larsson F, Runesson K, Su F (2010) Variationally consistent computational homogenization of transient heat flow. Int J Numer Meth Eng 81:1659–1686

    Article  MathSciNet  Google Scholar 

  24. Li SF, Wang G (2008) Introduction to Micromechanics and Nanomechanics. World Scientific, New Jersey

    Book  Google Scholar 

  25. Liu TR, Yang Y, Bacarreza OR, Tang SQ, Aliabadi MH (2023) An extended full field self-consistent cluster analysis framework for woven composite. Int J Solids Struct 281:112407

    Article  Google Scholar 

  26. Liu TR, Aldakheel F, Aliabadi MH (2024) Hydrogen assisted cracking using an efficient virtual element scheme. Comput Methods Appl Mech Eng 420:116708

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu TR, Aldakheel F, Aliabadi MH (2023) Virtual element method for phase field modeling of dynamic fracture. Comput Methods Appl Mech Eng 411:116050

    Article  ADS  MathSciNet  Google Scholar 

  28. Liu ZL, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  ADS  MathSciNet  Google Scholar 

  29. Ma X, Chen Y, Shakoor M, Vasiukov D, Lomov SV, Park CH (2023) Simplified and complete phase-field fracture formulations for heterogeneous materials and their solution using a Fast Fourier Transform based numerical method. Eng Fract Mech 279:109049

    Article  Google Scholar 

  30. Miehe C (1998) Comparison of two algorithms for the computation of fourth-order isotropic tensor functions. Comput Struct 66:37–43

    Article  MathSciNet  Google Scholar 

  31. Miehe C, Lambrecht M (2001) Algorithms for computation of stresses and elasticity moduli in terms of Seth-Hill’s family of generalized strain tensors. Commun Numer Methods Eng 17:337–353

  32. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  ADS  MathSciNet  Google Scholar 

  33. Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI J Proc 64:152–163

    Google Scholar 

  34. Pham K, Amor H, Marigo JJ, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20:618–652

    Article  Google Scholar 

  35. Rashid YR (1968) Ultimate strength analysis of prestressed concrete pressure vessels. Nucl Eng Des 7:334–344

    Article  Google Scholar 

  36. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  ADS  MathSciNet  Google Scholar 

  37. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  38. Steinke C, Kaliske M (2019) A phase-field crack model based on directional stress decomposition. Comput Mech 63:1019–1046

    Article  MathSciNet  Google Scholar 

  39. Tang SQ, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62:1443–1460

    Article  MathSciNet  Google Scholar 

  40. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    Article  ADS  MathSciNet  Google Scholar 

  41. Xu Y, Xiang MZ, Yu JD, Tang SQ, Chen J (2023) A variational fracture method based on eshelby transformation. Eur J Mech A-Solids 97:104846

    Article  MathSciNet  Google Scholar 

  42. Yang Y, Liu TR, Aliabadi MH, Tang SQ (2023) Virtual clustering analysis for long fiber reinforced composites. Comput Mech 71:1139–1159

    Article  MathSciNet  Google Scholar 

  43. Yvonnet J, He QC, Li PF (2022) A data-driven harmonic approach to constructing anisotropic damage models with a minimum number of internal variables. J Mech Phys Solids 162:104828

    Article  MathSciNet  Google Scholar 

  44. Yvonnet J, He QC, Li PF (2023) Reducing internal variables and improving efficiency in data-driven modelling of anisotropic damage from RVE simulations. Comput Mech 72:37–55

    Article  MathSciNet  Google Scholar 

  45. Zhang L, Tang SQ, Yu C, Zhu X, Liu WK (2019) Fast calculation of interaction tensors in clustering-based homogenization. Comput Mech 64:351–364

    Article  MathSciNet  Google Scholar 

  46. Zhu X, Zhang L, Tang SQ (2021) Adaptive selection of reference stiffness in virtual clustering analysis. Comput Methods Appl Mech Eng 376:113621

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R &D Program of China under Grant Number 2023YFA1008901, and National Natural Science Foundation of China under Grant Numbers 11832001 and 11988102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Formulation of damaged modulus

Formulation of damaged modulus

$$\begin{aligned}{} & {} \varvec{C} {:=}\frac{\partial \varvec{\sigma }}{\partial \varvec{\varepsilon }}=(1-d)^2 \left[ 3\lambda \tilde{H}(\textrm{tr}(\varvec{\varepsilon }))\mathbb {I}^{vol} + 2\mu \mathbb {P}^+\right] \nonumber \\{} & {} \qquad +\left[ 3\lambda \tilde{H}(-\textrm{tr}(\varvec{\varepsilon }))\mathbb {I}^{vol} +2\mu \mathbb {P}^-\right] \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} \mathbb {P}^{\pm } {:=} \frac{\partial \varvec{\varepsilon }^{\pm }}{\partial \varvec{\varepsilon }} = \sum _a^3 \tilde{H}(\pm \varepsilon _a) (\varvec{M}_a)_{ij} (\varvec{M}_{a})_{kl} + \frac{1}{2} \sum _a^3 \sum _{b\ne a}^3 \theta _{ab} \nonumber \\{} & {} \qquad \left[ (\varvec{M}_a)_{ik} (\varvec{M}_b)_{jl} + (\varvec{M}_b)_{il} (\varvec{M}_b)_{jk} \right] \end{aligned}$$
(A.2)

Here \(\tilde{H}(\cdot )\) is the Heaviside function and \(\theta _{ab}\) is defined as

$$\begin{aligned} \theta _{ab}=\left\{ \begin{aligned}&\frac{\langle \varepsilon _a \rangle _{\pm } -\langle \varepsilon _b \rangle _{\pm } }{\varepsilon _a -\varepsilon _b}&, \textrm{if} \ \varepsilon _a \ne \varepsilon _b, \\&\tilde{H}(\pm \varepsilon _a)&, \textrm{if} \ \varepsilon _a =\varepsilon _b . \end{aligned} \right. \end{aligned}$$
(A.3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Miao, J. Virtual clustering analysis for phase field model of quasi-static brittle fracture. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02459-3

Keywords

Navigation