Skip to main content
Log in

An aspect ratio dependent lumped mass formulation for serendipity finite elements with severe side-length discrepancy

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The frequency solutions of finite elements may significantly deteriorate as the mesh aspect ratios become large, which implies a severe element side-length discrepancy. In this work, an aspect ratio dependent lumped mass (ARLM) formulation is proposed for serendipity elements, i.e., the two-dimensional eight-node and three dimensional twenty-node quadratic elements for linear problems. In particular, a generalized parametric lumped mass matrix template taking into account the mesh aspect ratios is introduced to examine the frequency accuracy of serendipity elements. This generalized lumped mass matrix template completely meets the mass conservation and non-negativity requirements. Subsequently, analytical frequency error estimates are developed for serendipity elements, which clearly illustrate the relationship between the frequency accuracy and element aspect ratios. Accordingly, optimal mass parameters are obtained as the functions of element aspect ratios through solving a constrained optimization problem for frequency accuracy. It turns out that the resulting aspect ratio dependent lumped mass matrices yield much more accurate frequency solutions, in comparison to the diagonal scaling lumped mass (HRZ) matrices and the mid-node lumped mass (MNLM) matrices without consideration of the element aspect ratios, especially for finite element discretizations with severe element side-length discrepancy. The superior accuracy and robustness of the proposed ARLM over HRZ and MNLM are consistently demonstrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Chen C (2003) Superconvergence for rectangular serendipity finite elements. Sci China (Ser A) 46:1–10

    Article  MathSciNet  Google Scholar 

  2. Arnold DN, Awanou G (2011) The serendipity family of finite elements. Found Comput Math 11:337–344

    Article  MathSciNet  Google Scholar 

  3. Floater MS, Gillette A (2016) Nodal bases for the serendipity family of finite elements. Found Comput Math 17:879–893

    Article  MathSciNet  Google Scholar 

  4. Sinu A, Natarajan S, Shankar K (2018) Quadratic serendipity finite elements over convex polyhedral. Int J Numer Methods Eng 113:109–129

    Article  Google Scholar 

  5. Yang Y, Huang Y, Wang J, Liu X, Chen H (2023) Two 8-node quadrilateral unsymmetric elements with different incompatible modes immune to severe distortion. Int J Numer Methods Eng 124:2731–2755

    Article  MathSciNet  Google Scholar 

  6. Wu H, Shang Y, Cen S, Li C (2023) Penalty C0 8-node quadrilateral and 20-node hexahedral elements for consistent couple stress elasticity based on the unsymmetric finite element method. Eng Anal Boundary Elem 147:302–319

    Article  MathSciNet  Google Scholar 

  7. Archer JS (1965) Consistent mass matrix formulation for structural analysis using finite element techniques. AIAA J 3:1910–1918

    Article  ADS  Google Scholar 

  8. Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall

    Google Scholar 

  9. Babuska I, Osborn J (1991) Eigenvalue problems. Elsevier

    Book  Google Scholar 

  10. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications

    Google Scholar 

  11. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier

    Google Scholar 

  12. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley

    Google Scholar 

  13. Fried I, Chavez M (2004) Superaccurate finite element eigenvalue computation. J Sound Vib 275:415–422

    Article  ADS  Google Scholar 

  14. Guddati MN, Yue B (2004) Modified integration rules for reducing dispersion error in finite element methods. Comput Methods Appl Mech Eng 193:275–287

    Article  ADS  Google Scholar 

  15. Wang D, Liu W, Zhang H (2013) Novel higher order mass matrices for isogeometric structural vibration analysis. Comput Methods Appl Mech Eng 260:92–108

    Article  MathSciNet  ADS  Google Scholar 

  16. Idesman A, Dey B (2017) Optimal reduction of numerical dispersion for wave propagation problems. part 2: application to 2-D isogeometric elements. Comput Methods Appl Mech Eng 321:235–268

    Article  MathSciNet  ADS  Google Scholar 

  17. Wang D, Li X, Pan F (2017) A unified quadrature-based superconvergent finite element formulation for eigenvalue computation of wave equations. Comput Mech 59:37–72

    Article  MathSciNet  Google Scholar 

  18. Wang D, Pan F, Xu X, Li X (2019) Superconvergent isogeometric analysis of natural frequencies for elastic continua with quadratic splines. Comput Methods Appl Mech Eng 347:874–905

    Article  MathSciNet  ADS  Google Scholar 

  19. Li X, Wang D, Xu X, Sun Z (2020) Superconvergent isogeometric transient analysis of wave equations. Int J Struct Stab Dyn 20:2050083

    Article  MathSciNet  Google Scholar 

  20. Lin Z, Wang D, Wu X, Yu J (2023) A simple non-conforming isogeometric formulation with superior accuracy for free vibration analysis of thin beams and plates. Int J Struct Stab Dyn 23:2530128

    Article  MathSciNet  Google Scholar 

  21. Schreyer HL, Fedock JJ (1979) Orthogonal base functions and consistent diagonal mass matrices for two-dimensional elements. Int J Numer Methods Eng 14:1379–1398

    Article  MathSciNet  Google Scholar 

  22. Belytschko T, Mindle WL (1980) Flexural wave propagation behavior of lumped mass approximations. Comput Struct 12:805–812

    Article  Google Scholar 

  23. Li Y, Liang Y, Wang D (1991) On convergence rate of finite element eigenvalue analysis with mass lumping by nodal quadrature. Comput Mech 8:249–256

    Article  MathSciNet  Google Scholar 

  24. Chan HC, Cai CW, Cheung YK (1993) Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix. J Sound Vib 165:193–207

    Article  ADS  Google Scholar 

  25. Archer GC, Whalen TM (2005) Development of rotationally consistent diagonal mass matrices for plate and beam elements. Comput Methods Appl Mech Eng 194:675–689

    Article  ADS  Google Scholar 

  26. Talebi H, Samaniego C, Samaniego E, Rabczuk T (2012) On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. Int J Numer Methods Eng 89:1009–1027

    Article  MathSciNet  Google Scholar 

  27. Asareh I, Song JH, Mullen RL, Qian Y (2019) A general mass lumping scheme for the variants of the extended finite element method. Int J Numer Methods Eng 121:2262–2284

    Article  MathSciNet  Google Scholar 

  28. Duczek S, Gravenkamp H (2019) Mass lumping techniques in the spectral element method: on the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Comput Methods Appl Mech Eng 353:516–569

    Article  MathSciNet  ADS  Google Scholar 

  29. Li X, Wang D, Xu X, Sun Z (2022) A nodal spacing study on the frequency convergence characteristics of structural free vibration analysis by lumped mass Lagrangian fnite elements. Eng Comput 36:016689

    Google Scholar 

  30. Li X, Wang D (2022) On the significance of basis interpolation for accurate lumped mass isogeometric formulation. Comput Methods Appl Mech Eng 400:115533

    Article  MathSciNet  ADS  Google Scholar 

  31. Li X, Zhang H, Wang D (2022) A lumped mass finite element formulation with consistent nodal quadrature for improved frequency analysis of wave equations. Acta Mech Sin 38:521388

    Article  MathSciNet  Google Scholar 

  32. Nguyen TH, Hiemstra RR, Eisenträger S, Schillinger D (2023) Towards higher-order accurate mass lumping in explicit isogeometric analysis for structural dynamics. Comput Methods Appl Mech Eng 417:116233

    Article  MathSciNet  ADS  Google Scholar 

  33. Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall

    Google Scholar 

  34. Fried I, Malkus DS (1975) Finite element mass lumping by numerical integration with no convergence rate loss. Int J Solids Struct 11:461–466

    Article  Google Scholar 

  35. Malkus DS, Plesha ME (1986) Zero and negative masses in finite element vibration and transient analysis. Comput Methods Appl Mech Eng 59:281–306

    Article  MathSciNet  ADS  Google Scholar 

  36. Jensen MS (1996) High convergence order finite elements with lumped mass matrix. Int J Numer Methods Eng 39:1879–1888

    Article  Google Scholar 

  37. Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthq Eng Struct Dyn 4:245–249

    Article  Google Scholar 

  38. Yang Y, Zheng H, Sivaselvan MV (2017) A rigorous and unified mass lumping scheme for higher-order elements. Comput Methods Appl Mech Eng 319:491–514

    Article  MathSciNet  ADS  Google Scholar 

  39. Duczek S, Gravenkamp H (2019) Critical assessment of different mass lumping schemes for higher order serendipity finite elements. Comput Methods Appl Mech Eng 350:836–897

    Article  MathSciNet  ADS  Google Scholar 

  40. Hou S, Li X, Wang D, Lin Z (2021) A mid-node mass lumping scheme for accurate structural vibration analysis with serendipity finite elements. Int J Appl Mech 13:2150013

    Article  Google Scholar 

  41. Hou S, Wang D, Wu Z, Lin Z (2023) Precise mid-node lumped mass matrices for 3D 20-node hexahedral and 10-node tetrahedral finite elements. Chin J Theor Appl Mech 55:2043–2055

    Google Scholar 

  42. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MathSciNet  ADS  Google Scholar 

  43. Rao SS (2009) Engineering optimization theory and practice. Wiley

    Book  Google Scholar 

  44. Xu X, Lin Z, Hou S, Wang D (2022) Coarse mesh superconvergence in isogeometric frequency analysis of Mindlin-Reissner plates with reduced integration and quadratic splines. Acta Mech Solida Sin 35:922–939

    Article  Google Scholar 

  45. Belytschko T, Hughes TJR (1983) Computational methods for transient analysis. North-Holland

    Google Scholar 

  46. Wang L, Chamoin L, Ladevèze P, Zhong H (2016) Computable upper and lower bounds on eigenfrequencies. Comput Methods Appl Mech Eng 302:27–73

    Article  MathSciNet  ADS  Google Scholar 

  47. Bathe KJ (1996) Finite element procedures. Prentice Hall

    Google Scholar 

  48. Wang J, Hillman MC (2022) Temporal stability of collocation, Petrov-Galerkin, and other non-symmetric methods in elastodynamics and an energy conserving time integration. Comput Methods Appl Mech Eng 393:114738

    Article  MathSciNet  ADS  Google Scholar 

  49. Blevins RD (1980) Formulas for natural frequency and mode shape. Van Nostrand Reinhold

    Book  Google Scholar 

  50. Radtke L, Müller D, Düster A (2021) Optimally blended spectral elements in structural dynamics: selective integration and mesh distortion. Int J Comput Methods 18:2150042

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (12372201, 12072302) and the Natural Science Foundation of Fujian Province of China (2021J02003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, the critical times steps for all numerical examples with different meshes are listed in Tables 2, 3, 4 and 5, which coherently indicate that the critical times steps corresponding to the proposed method of ARLM are larger than those of HRZ for both 2D and 3D cases.

Table 2 Comparison of critical time steps for the 2D plane strain elasticity problem
Table 3 Comparison of critical time steps for the 2D elastic bar problem
Table 4 Comparison of critical time steps for the 2D one-third annular membrane problem
Table 5 Comparison of critical time steps for the 3D cylindrical cavity problem

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Li, X., Lin, Z. et al. An aspect ratio dependent lumped mass formulation for serendipity finite elements with severe side-length discrepancy. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02457-5

Keywords

Navigation