Skip to main content
Log in

Frequency convergence characteristics of lumped mass Galerkin meshfree methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Due to the considerable complexity of meshfree approximants, there still lacks a rational theoretical estimate on the frequency accuracy of lumped mass meshfree methods. In this study, a detailed theoretical analysis is presented for the lumped mass Galerkin meshfree formulation with particular reference to the frequency accuracy. The proposed accuracy analysis is quite general and is fully based upon the reproducing or consistency conditions of meshfree shape functions and their gradients. The theoretical findings reveal that there exists an important and interesting odd/even basis degree discrepancy feature for the frequency accuracy, i.e., (p + 2)th and (p + 1)th order accurate frequencies are attained by the lumped mass Galerkin meshfree formulation using even and odd degrees of basis functions, where p is the degree of basis function employed in the meshfree shape function construction. Furthermore, it is found that interpolatory meshfree shape functions are capable of not only circumventing the non-physical modes arising from the lumped mass Galerkin meshfree formulation using the standard non-interpolatory shape functions, but also elevating the frequency accuracy for meshfree structural vibration analysis. Numerical examples well replicate the theoretical frequency accuracy analysis results for lumped mass Galerkin meshfree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig.23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  4. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method. Tech Science, Los Angeles

    MATH  Google Scholar 

  5. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  6. Zhang X, Liu Y (2004) Meshless methods. Tsinghua University Press & Springer, Beijing

    Google Scholar 

  7. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: A review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Chen JS, Hillman M, Chi S (2017) Meshfree methods: progress made after 20 years. J Eng Mech-Asce 143:04017001

    Article  Google Scholar 

  10. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Methods 15:1830001

    Article  MathSciNet  MATH  Google Scholar 

  11. Rabczuk T, Song J, Zhuang X, Anitescu C (2019) Extended finite element and meshfree methods. Academic Press, Cambridge

    Google Scholar 

  12. Suchde P, Jacquemin T, Davydov O (2023) Point cloud generation for meshfree methods: an overview. Arch Comput Methods Eng 30:889–915

    Article  Google Scholar 

  13. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MATH  Google Scholar 

  15. Belytschko T, Tabbara TM (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Meth Eng 39:923–938

    Article  MATH  Google Scholar 

  16. Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Meth Eng 72:524–548

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu GR, Dai KY, Lim KM, Gu YT (2002) A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519

    Article  MATH  Google Scholar 

  18. Liew KM, Ng TY, Zhao X, Reddy JN (2002) Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput Methods Appl Mech Eng 191:4141–4157

    Article  MATH  Google Scholar 

  19. Li H, Wang Q, Lam KY (2004) Development of a novel meshfree Local Kriging (LoKriging) method for structural dynamic analysis. Comput Methods Appl Mech Eng 193:2599–2619

    Article  MATH  Google Scholar 

  20. Bui TQ, Nguyen MN, Zhang C (2011) A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput Methods Appl Mech Eng 200:1354–1366

    Article  MATH  Google Scholar 

  21. Wang D, Lin Z (2010) Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Comput Mech 46:703–719

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang D, Song C, Peng H (2015) A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff–Love cylindrical shells. Int J Struct Stab Dyn 15:1450090

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu J, Wang D, Lin Z (2018) A meshfree higher order mass matrix formulation for structural vibration analysis. Int J Struct Stab Dyn 18:1850121

    Article  MathSciNet  Google Scholar 

  24. Wang B, Lu C, Fan C, Zhao M (2021) A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate. Eng Anal Bound Elem 132:159–167

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen JS, Wu C, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  26. Duan Q, Gao X, Wang B, Li X, Zhang H, Belytschko T, Shao Y (2014) Consistent element-free Galerkin method. Int J Numer Meth Eng 99:79–101

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    Article  MathSciNet  MATH  Google Scholar 

  28. Baek J, Schlinkman RT, Beckwith FN, Chen JS (2022) A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling. Adv Model Simul Eng Sci 9:1–35

    Article  Google Scholar 

  29. Jiang W, Gao XW (2023) Analysis of thermo-electro-mechanical dynamic behavior of piezoelectric structures based on zonal Galerkin free element method. Eur J Mech A Solids 99:104939

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang Q, Nguyen-Thanh N, Li W, Zhang A, Li S, Zhou K (2023) A coupling approach of the isogeometric-meshfree method and peridynamics for static and dynamic crack propagation. Comput Methods Appl Mech Eng 410:115904

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang D, Zhang H (2014) A consistently coupled isogeometric-meshfree method. Comput Methods Appl Mech Eng 268:843–870

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang H, Wu J, Wang D (2015) Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Front Struct Civ Eng 9:405–419

    Article  Google Scholar 

  33. Zhang H, Wang D (2017) Reproducing kernel formulation of B-spline and NURBS basis functions: a meshfree local refinement strategy for isogeometric analysis. Comput Methods Appl Mech Eng 320:474–508

    Article  MathSciNet  MATH  Google Scholar 

  34. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  35. Zienkiewicz OC, Taylor RL, Zhu J (2015) The finite element method: its basis and fundamentals, 7th edn. Amsterdam, Elsevier

    MATH  Google Scholar 

  36. Voth T, Christon TM (2001) Discretization errors associated with reproducing kernel methods: one-dimensional domains. Comput Methods Appl Mech Eng 190:2429–2446

    Article  MATH  Google Scholar 

  37. You Y, Chen JS, Voth TE (2002) Characteristics of semi-and full discretization of stabilized Galerkin meshfree method. Finite Elem Anal Des 38:999–1012

    Article  MathSciNet  MATH  Google Scholar 

  38. Voth T, Wang D, Chen JS (2002) An analysis of stabilized integration, Galerkin meshfree discretizations for advection problems. In: Proceedings of the 5th world congress on computational mechanics, Vienna, Austria, July 7–12

  39. Wang D, Lin Z (2011) Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Comput Mech 48:47–63

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang D, Lin Z (2012) A comparative study on the dispersion properties of HRK and RK meshfree approximations for Kirchhoff plate problem. Int J Comput Methods 9:1240015

    Article  MathSciNet  MATH  Google Scholar 

  41. Park CK, Wu CT, Kan C (2011) On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation. Finite Elem Anal Des 47:683–697

    Article  MathSciNet  Google Scholar 

  42. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  43. Metsis P, Lantzounis N, Papadrakakis M (2015) A new hierarchical partition of unity formulation of EFG meshless methods. Comput Methods Appl Mech Eng 283:782–805

    Article  MathSciNet  MATH  Google Scholar 

  44. Qi D, Wang D, Deng L, Xu X, Wu C (2019) Reproducing kernel mesh-free collocation analysis of structural vibrations. Eng Comput 36:734–764

    Article  Google Scholar 

  45. Deng L, Wang D, Qi D (2021) A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis. Comput Mech 68:1063–1096

    Article  MathSciNet  MATH  Google Scholar 

  46. Deng L, Wang D, Xu X, Lin Z, Fu S (2023) A superconvergent meshfree collocation formulation for laminated composite plates with particular focus on convergence analysis. Compos Struct 321:117248

    Article  Google Scholar 

  47. Chen JS, Wang H (2000) New boundary condition treatments in meshless computation of contact problems. Comput Methods Appl Mech Eng 187:441–468

    Article  MATH  Google Scholar 

  48. Kaljević I, Saigal S (1997) An improved element free Galerkin formulation. Int J Numer Methods Eng 40:2953–2974

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen JS, Han W, You Y, Meng X (2003) A reproducing kernel method with nodal interpolation property. Int J Numer Methods Eng 56:935–960

    Article  MathSciNet  MATH  Google Scholar 

  50. Li X, Wang D (2022) On the significance of basis interpolation for accurate lumped mass isogeometric formulation. Comput Methods Appl Mech Eng 400:115533

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang D, Wang J, Wu J (2018) Superconvergent gradient smoothing meshfree collocation method. Comput Methods Appl Mech Eng 340:728–766

    Article  MathSciNet  MATH  Google Scholar 

  52. Deng L, Wang D (2023) An accuracy analysis framework for meshfree collocation methods with particular emphasis on boundary effects. Comput Methods Appl Mech Eng 404:115782

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen JS, Wu CT (1998) Generalized nonlocal meshfree method in strain localization. In: Proceeding of international conference on computational engineering science, Atlanta, Georgia, October 6–9

  54. Rao SS (2007) Vibration of continuous systems. Wiley, New York

    Google Scholar 

  55. Asmar NH (2004) Partial differential equations with Fourier series and boundary value problems, 2nd edn. Prentice Hall, Hoboken

    MATH  Google Scholar 

  56. Wang L, Chamoin L, Ladevèze P, Zhong H (2016) Computable upper and lower bounds on eigenfrequencies. Comput Methods Appl Mech Eng 302:27–43

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (12072302, 12372201) and the Natural Science Foundation of Fujian Province of China (2021J02003) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

(1) Proof of Eq. (42).

In Eq. (42), \(\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{q} }\) can be written as:

$$ \begin{aligned}\begin{aligned} & \sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{q} } \\ & \quad = \sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x + x - x_{I} )^{q} } \\ & \quad = \sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)\sum\limits_{k = 0}^{q} {C_{q}^{k} (x_{J} - x)^{q - k} (x - x_{I} )^{k} } } \end{aligned} \end{aligned} $$
(A.1)

Therefore, according to Eq. (13), Eq. (A.1) can be ultimately recast as:

$$ \begin{aligned}\begin{aligned} & \sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{q} } \\ & \quad = C_{q}^{q - 1} \underbrace {{\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x)} }}_{ = 1}(x - x_{I} )^{q - 1} \\ & \quad = q(x - x_{I} )^{q - 1} \\ \end{aligned}\end{aligned} $$
(A.2)

(2) Proof of Eq. (43).

In accordance with Eq. (42), Eq. (43) can be simplified as:

$$ \begin{gathered} \int_{\Omega } {\Psi_{{I,x}} (x)\underbrace {{\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{q} } }}_{{ = q(x - x_{I} )^{q - 1} }}(x - x_{I} )^{2} dx} \hfill \\ = q\int_{\Omega } {\Psi_{{I,x}} (x)(x - x_{I} )^{q + 1} dx} \hfill \\ \end{gathered} $$
(A.3)

Through the integration by parts, Eq. (A.3) can be deduced as follows:

$$ \begin{aligned} & q\int_{\Omega } {\Psi_{{I,x}} (x)(x - x_{I} )^{q + 1} dx} \\ & \quad = q\int_{\Omega } {(x - x_{I} )^{q + 1} d(\Psi_{I} (x))} \\ & \quad = q\left[ {\underbrace {{\Psi_{I} (x)(x - x_{I} )^{q + 1} |_{\Omega } }}_{ = 0} - (q + 1)\int_{\Omega } {\Psi_{I} (x)(x - x_{I} )^{q} dx} } \right] \\ & \quad = - q(q + 1)\int_{\Omega } {\Psi_{I} (x)(x - x_{I} )^{q} dx} \\ \end{aligned} $$
(A.4)

Subsequently, by employing the periodicity and symmetry of meshfree shape functions for uniform discretizations, i.e., Eq. (39), we have:

$$ \begin{gathered} \int_{\Omega } {\Psi_{I} (x)(x - x_{I} )^{q} dx}\hfill \\ \quad = \sum\limits_{{M \in S_{(I + M)I} }} {\int_{{x_{I - M} }}^{{x_{I - M + 1} }} {\Psi_{I} (x)(x - x_{I} )^{q} dx} }\hfill \\ \quad = \sum\limits_{{M \in S_{(I + M)I} }} {\int_{{x_{I - M} }}^{{x_{I - M + 1} }} {\Psi_{I + M} (x + x_{I + M} - x_{I} )(x - x_{I} )^{q} dx} } \hfill \\ \quad = \sum\limits_{{M \in S_{(I + M)I} }} {\int_{{x_{I - M} + x_{I + M} - x_{I} }}^{{x_{I - M + 1} + x_{I + M} - x_{I} }} {\Psi_{I + M} (x)(x - x_{I + M} )^{q} dx} } \hfill \\ \quad = \int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{(I + M) \in S_{I + M} }} {\Psi_{I + M} (x)(x - x_{I + M} )^{q} } } dx \hfill \\ \end{gathered} $$
(A.5)

Letting \(q = 0\) in Eq. (A.5) gives:

$$ \begin{gathered} \int_{\Omega } {\Psi_{I} (x)(x - x_{I} )^{q} dx} \hfill \\ = \int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{(I + M) \in S_{I + M} }} {\Psi_{I + M} (x)(x - x_{I + M} )^{q} } }}_{ = 1}} dx \hfill \\ = h \hfill \\ \end{gathered} $$
(A.6)

In case of \(q \ne 0\), Eq. (A.5) becomes:

$$ \begin{gathered} \int_{\Omega } {\Psi_{I} (x)(x - x_{I} )^{q} dx} \hfill \\ = \int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{(I + M) \in S_{I + M} }} {\Psi_{I + M} (x)(x - x_{I + M} )^{q} } }}_{ = 0}} dx \hfill \\ = 0 \hfill \\ \end{gathered} $$
(A.7)

Therefore, with the aid of Eqs. (A.4)-(A.7), Eq. (A.3) reduces to:

$$ \int_{\Omega } {\Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{q} } (x - x_{I} )^{2} dx} = 0 $$
(A.8)

where \(0 \le q \le p\).


(3) Proof of Eq. (44).

Substituting Eq. (40) into Eq. (44) gives:

$$ \begin{gathered} \int_{\Omega } {\Psi_{{I,x}} (x)(x - x_{I} )^{q} dx}\hfill\\ \quad = \sum\limits_{{N \in S_{(N + I)I} }} {\int_{{x_{I - N} }}^{{x_{I - N + 1} }} {\Psi_{{I,x}} (x)(x - x_{I} )^{q} dx} } \hfill\\ \quad = \sum\limits_{{N \in S_{(N + I)I} }} {\int_{{x_{I - N} }}^{{x_{I - N + 1} }} {\Psi_{{I + N,x}} (x + x_{I + N} - x_{I} )(x - x_{I} )^{q} dx} } \hfill\\ \quad = \sum\limits_{{N \in S_{(N + I)I} }} {\int_{{x_{I - N} + x_{I + N} - x_{I} }}^{{x_{I - N + 1} + x_{I + N} - x_{I} }} {\Psi_{{I + N,x}} (x)(x - x_{I + N} )^{q} dx} } \hfill\\ \quad = \int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{(N + I) \in S_{N + I} }} {\Psi_{{I + N,x}} (x)(x - x_{I + N} )^{q} } dx} \hfill\\ \end{gathered} $$
(A.9)

With the aid of Eq. (13), Eq. (A.9) becomes:

$$ \begin{gathered} \int_{\Omega } {\Psi_{{I,x}} (x)(x - x_{I} )^{q} dx}\hfill \\ \quad = \int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{(N + I) \in S_{N + I} }} {\Psi_{{I + N,x}} (x)(x - x_{I + N} )^{q} } dx} \hfill \\ \quad = \left\{ \begin{gathered} \int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{(N + I) \in S_{N + I} }} {\Psi_{{I + N,x}} (x)(x - x_{I + N} )} }}_{ = - 1}dx} = - h, \, q = 1 \hfill \\ \int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{(N + I) \in S_{N + I} }} {\Psi_{{I + N,x}} (x)(x - x_{I + N} )^{q} } }}_{ = 0}dx} = 0, \, q \ne 1 \hfill \\ \end{gathered} \right. \\ \end{gathered} $$
(A.10)

(4) Proof of Eq. (60).

In accordance with Eq. (40), \({\mathcal{C}}_{1}\) becomes:

$$ \begin{aligned} {\mathcal{C}}_{1} &= \int_{\Omega } {\Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{2n} (x_{J} - x)^{2} } dx} \\&= \sum\limits_{{N \in S_{{(I{ + }N)I}} }} \int_{{x_{I} }}^{{x_{I} +h}} \Psi_{{I + N,x}} (x)\sum\limits_{{M \in S_{{(I{ + }M)(I{ +}N)}} }}\\&\quad \left\{\Psi_{{I + M,x}} (x) (x_{I + M} - x_{I + N})^{2n} (x_{I + M} - x)^{2} \right\}dx \\&= \int_{{x_{I} }}^{{x_{I} + h}}\!\! {\sum\limits_{{M \in S_{(I + M)(I + N)} }} \!{\left\{ \begin{gathered} \underbrace {{\sum\limits_{{I + N \in S_{(I + N)I} }} {\Psi_{{I + N,x}} (x)} (x_{I + M} - x_{I + N} )^{2n} }}_{{ = (2n)(x - x_{I + M} )^{2n - 1} }} \\ \times \Psi_{{I + M,x}} (x)(x_{I + M} - x)^{2} \\ \end{gathered} \right\}dx} }\; \\&= (2n)\int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{(I + M) \in S_{{I{ + }M}} }} {\Psi_{{I + M,x}} (x)(x - x_{I + M} )^{2n + 1} } }}_{ = 0}dx} \\ &= 0 \\\end{aligned} $$
(A.11)

(5) Proof of Eq. (62).

Based upon the binomial expansion approach and the completeness conditions of the derivatives for meshfree shape functions as indicated in Eq. (13), we have:

$$ \begin{aligned} {\mathcal{C}}_{3} &= 2\int_{\Omega } \Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }} \Psi_{{J,x}} (x)(x_{J} - x_{I} )^{2n}\\&\quad \times \left[ {(x_{J} - x)(x - x_{I} )} \right]dx \\&= 2\int_{\Omega } \Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }}\Psi_{{J,x}} (x)(x_{J} - x + x - x_{I} )^{2n}\\&\quad \times \left[ {(x_{J} - x)(x - x_{I} )} \right]dx \\&= 2\sum\limits_{k = 0}^{2n} {C_{2n}^{k} } \int_{\Omega }\Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }} \Psi_{{J,x}}(x)\\&\quad \times (x_{J} - x)^{2n + 1 - k} (x - x_{I} )^{k + 1} dx \\&= 2C_{2n}^{0} \int_{\Omega } \Psi_{{I,x}}(x)\underbrace{{\sum\limits_{{J \in S_{J} }} \Psi_{{J,x}} (x)(x_{J}- x)^{2n + 1} }}_{ = 0}\\&\quad \times (x - x_{I} )dx + \cdots \\&\quad + 2C_{2n}^{2n}\int_{\Omega } {\Psi_{{I,x}} (x)\underbrace {{\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x)^{1} } }}_{ = 1}(x - x_{I})^{2n + 1} dx} \\&= 2C_{2n}^{2n} \underbrace {{\int_{\Omega }{\Psi_{{I,x}} (x)(x - x_{I} )^{2n + 1} dx} }}_{ = 0} = 0 \\\end{aligned} $$
(A.12)

(6) Proof of Eq. (66).

Following the similar routine used in the proof of Eq. (60), \({\mathcal{C}}_{1}\) in Eq. (66) can be obtained as follows:

$$ \begin{aligned} {\mathcal{C}}_{1} &=\int_{\Omega } {\Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }}{\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{2n} (x_{J} - x)^{2} } dx}\\&=\sum\limits_{{N \in S_{(I + N)I} }} \int_{{x_{I - N} }}^{{x_{I -N +1} }} \Psi_{{I,x}} (x)\sum\limits_{{M \in S_{(I - N + M)I} }}\Big\{\Psi_{{I - N + M,x}} (x)\\&\quad \times (x_{I - N + M}-x_{I} )^{2n} (x_{I - N + M} - x)^{2}\Big\}dx \\&= \sum\limits_{{N \in S_{(I + N)I} }} \int_{{x_{I - N} }}^{{x_{I -N + 1} }}\sum\limits_{{M \in S_{(I + M)(I + N)} }} \\&\quad \Big\{\Psi_{{I + N,x}} (x + x_{I + N} - x_{I} )\Psi_{{I + M,x}} (x + x_{I + N} - x_{I} )\\&\quad \times (x_{I - N + M} - x_{I})^{2n} (x_{I - N + M} - x)^{2}\Big\}dx \\&= \sum\limits_{{N \in S_{(I + N)I} }}\int_{{x_{I - N} + x_{I + N}- x_{I} }}^{{x_{I - N + 1} + x_{I + N} -x_{I} }} \sum\limits_{{M \in S_{(I + M)(I + N)} }} \\&\quad \Big\{ \Psi_{{I + N,x}} (x)\Psi_{{I + M,x}} (x) (x_{I + M} - x_{I +N} )^{2n} (x_{I - N + M} - x\\&\quad + x_{I + N} - x_{I})^{2}\Big\}dx \\ &= \sum\limits_{{N \in S_{(I + N)I} }} \int_{{x_{I}}}^{{x_{I} + h}} \Psi_{{I + N,x}}(x)\sum\limits_{{M \in S_{(I + M)(I + N)} }}\\&\quad \Big\{ \Psi_{{I + M,x}} (x) (x_{I + M} -x_{I + N})^{2n} (x_{I + M} - x)^{2} \Big\}dx \\ &= \int_{{x_{I}}}^{{x_{I}+ h}} \sum\limits_{{M \in S_{(I + M)(I + N)} }}\Bigg\{ \sum\limits_{{I + N \in S_{(I + N)I} }}{\Psi_{{I +N,x}} (x)} (x_{I + M} - x_{I + N} )^{2n}\\&\quad \times \Psi_{{I +M,x}} (x)(x_{I + M} - x)^{2}\Bigg\}dx \\\end{aligned}$$
(A.13)

In the meantime, based upon Eq. (42), Eq. (A.13) can be recast as:

$$ \begin{aligned} {\mathcal{C}}_{1} & = \int_{{x_{I} }}^{{x_{I} + h}}\!\! {\sum\limits_{{M \in S_{(I + M)(I + N)} }} \!{\left\{ \begin{gathered} \underbrace {{\sum\limits_{{I + N \in S_{(I + N)I} }} {\Psi_{{I + N,x}} (x)} (x_{I + M} - x_{I + N} )^{2n} }}_{{ = 2n(x - x_{I + M} )^{2n - 1} }} \\ \times \Psi_{{I + M,x}} (x)(x_{I + M} - x)^{2} \\ \end{gathered} \right\}dx} } \\ & = 2n\int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{(I + M) \in S_{I + M} }} {\Psi_{{I + M,x}} (x)(x - x_{I + M} )^{2n + 1} } dx} \\ \end{aligned} $$
(A.14)

(7) Proof of Eq. (71).

Similar to the proof of Eq. (66), substituting Eqs. (40) and (42) into Eq. (71) gives:

$$ \begin{aligned}\begin{aligned} {\mathcal{D}}_{1} & = \int_{\Omega } {\Psi_{{I,x}} (x)\sum\limits_{{J \in S_{J} }} {\Psi_{{J,x}} (x)(x_{J} - x_{I} )^{2n - 1} (x_{J} - x)^{2} } (x - x_{I} )dx} \\ & = \sum\limits_{{N \in S_{(I + N)I} }} \int_{{x_{I} }}^{{x_{I} + h}} {\Psi_{{I + N,x}} (x)\sum\limits_{{M \in S_{(I + M)(I + N)} }} {\left\{ \begin{gathered} \Psi_{{I + M,x}} (x)(x_{I + M} - x_{I + N} )^{2n - 1} \\ \times (x - x_{I + N} )(x_{I + M} - x)^{2} \\ \end{gathered} \right\}dx} } \hfill \\ & = \int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{M \in S_{(I + M)(I + N)} }} {\left\{ \begin{gathered} \underbrace {{\sum\limits_{{I + N \in S_{(I + N)} }} {\Psi_{{I + N,x}} (x)} (x_{I + M} - x_{I + N} )^{2n - 1} \times (x - x_{I + N} )}}_{{ = (x - x_{I + M} )^{2n - 1} }} \\ \times \Psi_{{I + M,x}} (x)(x_{I + M} - x)^{2} \\ \end{gathered} \right\}dx} } \\ & = \int_{{x_{I} }}^{{x_{I} + h}} {\sum\limits_{{I + M \in S_{(I + M)} }} {\Psi_{{I + M,x}} (x)(x - x_{I + M} )^{2n + 1} } dx} \\ \end{aligned}\end{aligned} $$
(A.15)

According to Eqs. (67) and (68), Eq. (A.15) becomes:

$$ {\mathcal{D}}_{1} = \int_{{x_{I} }}^{{x_{I} + h}} {\underbrace {{\sum\limits_{{I + M \in S_{(I + M)} }} {\Psi_{{I + M,x}} (x)(x - x_{I + M} )^{2n + 1} } }}_{ = 0}dx} \; = 0 $$
(A.16)

(8) Proof of Eq. (82).

For convenience of development, Eqs. (82) can be expressed as follows:

$$ \begin{aligned} & \sum\limits_{{J \in S_{JI} }} {\int_{\Omega } {\nabla \Psi_{I} ({\varvec{x}}) \cdot \nabla \Psi_{J} ({\varvec{x}})(x_{J} - x_{I} )^{2n + 2} d\Omega } } \\ & \quad = \int_{\Omega } {\nabla \Psi_{I} ({\varvec{x}}) \cdot \sum\limits_{{J \in S_{J} }} {\nabla \Psi_{J} ({\varvec{x}})(x_{J} - x_{I} )^{2n + 2} } d\Omega } \\ & \quad = \int_{{\Omega_{y} }} {\int_{{\Omega_{x} }} {\nabla \Psi_{I} ({\varvec{x}}) \cdot \sum\limits_{{J \in S_{J} }} {\nabla \Psi_{J} ({\varvec{x}})(x_{J} - x_{I} )^{2n + 2} } dxdy} } \\ \end{aligned} $$
(A.17)

in which \(\Omega_{x}\) and \(\Omega_{y}\) represent the directional problem domains along the \(x\) and \(y\) directions, respectively.

In accordance with Eqs. (63) and (74), we have:

$$ \begin{aligned} &\sum\limits_{{J \in S_{JI} }} {\int_{\Omega } {\nabla \Psi_{I} ({\varvec{x}}) \cdot \nabla \Psi_{J} ({\varvec{x}})(x_{J} - x_{I} )^{2n + 2} d\Omega } } \\&\quad = \int_{{\Omega_{y} }} {\underbrace {{\int_{{\Omega_{x} }} {\nabla \Psi_{I} ({\varvec{x}}) \cdot \sum\limits_{{J \in S_{J} }} {\nabla \Psi_{J} ({\varvec{x}})(x_{J} - x_{I} )^{2n + 2} } dx} }}_{ = 0}dy} = 0 \\ \end{aligned} $$
(A.18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Fu, S., Deng, L. et al. Frequency convergence characteristics of lumped mass Galerkin meshfree methods. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02410-y

Keywords

Navigation