Skip to main content
Log in

A mixed-order interpolation solid element for efficient arterial wall simulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A numerical strategy tailored to model the mechanical equilibrium in vascular vessels is presented. The formulation, based on a specific arrangement of finite elements, exploits the shell-like structure of the vessel wall by proposing a mixed-order approximation of the displacement field. The fields across the thickness are represented by a single element with high order polynomial approximation while the in-plane components are described through low-order 2D polynomials. The formulation is versatile to accommodate any kind of hyperelastic constitutive material model undergoing large strains. A series of numerical examples is presented to validate the effectiveness of the proposed approach. These examples range from benchmark problems reported in the literature to applications in the domain of cardiovascular modeling. The proposed approach proved to be effective and efficient in simulating the mechanics of vascular vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arif Yurdagul J, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295

    Article  Google Scholar 

  2. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using fsi modeling. J Biomech 41(5):1111–1118

    Article  Google Scholar 

  3. Gao H, Long Q, Kumar Das S, Halls J, Graves M, Gillard JH, Li Z-Y (2011) Study of carotid arterial plaque stress for symptomatic and asymptomatic patients. J Biomech 44(14):2551–2557

    Article  Google Scholar 

  4. Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Yong Kim W (2008) Mechanical stresses in carotid plaques using mri-based fluid-structure interaction models. J Biomech 41(8):1651–1658

    Article  Google Scholar 

  5. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  Google Scholar 

  6. Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng [H] 227(2):148–161

    Article  Google Scholar 

  7. Li Z-Y, Howarth SPS, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37(5):1195–1199

    Article  Google Scholar 

  8. Tang D, Teng Z, Canton G, Hatsukami TS, Dong L, Huang X, Yuan C (2009) Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. BioMed Eng Online 8

  9. Vengrenyuk Y, Kaplan TJ, Cardoso L, Randolph GJ, Weinbaum S (2010) Computational stress analysis of atherosclerotic plaques in apoe knockout mice. Ann Biomed Eng 38(3):738–747

    Article  Google Scholar 

  10. Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V (2016) Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations: comparison with in vivo data in an aortic dissection. Front Physiol 7(JUN)

  11. Gasser TC, Holzapfel GA (2007) Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann Biomed Eng 35(5):711–723

    Article  Google Scholar 

  12. Holzapfel GA (2009) Arterial tissue in health and disease: experimental data, collagen-based modeling and simulation, including aortic dissection. CISM Int Centre Mech Sci Courses Lect 508:259–344

    Article  MathSciNet  Google Scholar 

  13. Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23(9):647–655

    Article  Google Scholar 

  14. Humphrey JD, Canham PB (2000) Structure, mechanical properties, and mechanics of intracranial saccular aneurysms. J Elast 61(1–3):49–81

    Article  Google Scholar 

  15. Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R (1993) Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg 7(6):667–674

    Article  Google Scholar 

  16. Badel P, Avril S, Sutton MA, Lessner SM (2014) Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries. J Biomech 47(4):878–889

    Article  Google Scholar 

  17. Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1):166–180

    Article  Google Scholar 

  18. Kiousis DE, Gasser TC, Holzapfel GA (2007) A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann Biomed Eng 35(11):1857–1869

    Article  Google Scholar 

  19. Li Z, Kleinstreuer C (2005) Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys 27(5):369–382

    Article  Google Scholar 

  20. Migliavacca F, Petrini L, Massarotti P, Schievano S, Auricchio F, Dubini G (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2(4):205–217

    Article  Google Scholar 

  21. Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A Math Phys Eng Sci 466(2118):1551–1597

    MathSciNet  Google Scholar 

  22. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics

  23. Brands D, Klawonn A, Rheinbach O, Schröder J (2008) Modelling and convergence in arterial wall simulations using a parallel feti solution strategy. Comput Methods Biomech Biomed Engin 11(5):569–583

    Article  Google Scholar 

  24. de Souza Neto E, Perić D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296

    Article  MathSciNet  Google Scholar 

  25. Simo JC (1998) Numerical analysis and simulation of plasticity. Handb Numer Anal 6:183–499

    MathSciNet  Google Scholar 

  26. Chiumenti M, Valverde Q, Agelet De Saracibar C, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191(46):5253–5264

    Article  MathSciNet  Google Scholar 

  27. Lee CH, Gil AJ, Bonet J (2014) Development of a stabilised petrov-galerkin formulation for conservation laws in lagrangian fast solid dynamics. Comput Methods Appl Mech Eng 268:40–64

    Article  MathSciNet  Google Scholar 

  28. Oñate E, Idelsohn SR, Felippa CA (2011) Consistent pressure laplacian stabilization for incompressible continua via higher-order finite calculus. Int J Numer Meth Eng 87(1–5):171–195

    Article  MathSciNet  Google Scholar 

  29. Liu J, Marsden AL, Tao Z (2019) An energy-stable mixed formulation for isogeometric analysis of incompressible hyperelastodynamics. Int J Numer Meth Eng 120(8):937–963

    Article  MathSciNet  Google Scholar 

  30. Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput Methods Appl Mech Eng 196(31–32):3070–3078

    Article  MathSciNet  Google Scholar 

  31. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706

    Article  MathSciNet  Google Scholar 

  32. Taroco EO, Blanco PJ, Feijóo RA (2020) Introduction to the variational formulation in mechanics: fundamentals and applications

  33. Nama N, Aguirre M, Humphrey JD, Figueroa CA (2020) A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Sci Rep 10(1)

  34. Braeu F, Seitz A, Aydin R, Cyron C (2017) Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 16(3):889–906

    Article  Google Scholar 

  35. Laubrie JD, Mousavi JS, Avril S (2020) A new finite-element shell model for arterial growth and remodeling after stent implantation. Int J Numer Methods Biomed Eng 36(1)

  36. Chuong CJ, Fung YC (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3):268–274. https://doi.org/10.1115/1.3138417

    Article  Google Scholar 

  37. Sepahi O, Radtke L, Debus SE, Düster A (2017) Anisotropic hierarchic solid finite elements for the simulation of passive-active arterial wall models. Comput Math Appl 74(12):3058–3079

    Article  MathSciNet  Google Scholar 

  38. Blanco PJ, Ares GD, Urquiza SA, Feijóo RA (2016) On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach. Biomech Model Mechanobiol 15(3):593–627

    Article  Google Scholar 

  39. Urquiza SA, Blanco PJ, Ares GD, Feijóo RA (2012) Implementation issues of large strain formulations of hyperelastic materials for the modeling of arterial wall mechanics. Scientific Comput Appl Med Healthcare 79

  40. Bathe K-J (1996) Finite element procedures

  41. Crisfield M (1997) Non-linear finite element analysis of solids and structures: advanced topics. Wiley

  42. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures

  43. Stein E, Olavi Rüter M (2018) Finite element methods for elasticity with error-controlled discretization and model adaptivity. Encyclopedia Comput Mech Second Ed:1–96

  44. Delfino A, Stergiopulos N, Moore J Jr, Meister J-J (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786

    Article  Google Scholar 

  45. Hariton I, Debotton G, Gasser T, Holzapfel G (2007) Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3):460–470

    Article  MathSciNet  Google Scholar 

  46. Rhodin JA (1980) Architecture of the vessel wall. Vascular smooth muscle:1–31

  47. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48

    MathSciNet  Google Scholar 

  48. Carew TE, Vaishnav RN, Patel DJ (1968) Compressibility of the arterial wall. Circ Res 23(1):61–68

    Article  Google Scholar 

  49. Chuong C, Fung Y (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1):35–40

    Article  Google Scholar 

  50. Fung Y (1990) Motion, flow, stress and growth, Biomechanics. Springer

  51. Doll S, Schweizerhof K (2000) On the development of volumetric strain energy functions. J Appl Mech 67(1):17–21

    Article  Google Scholar 

  52. Frenzel M (2009) Advanced structural finite element modeling of arterial walls for patient-specific geometries. PhD thesis, Technische Universität München

  53. Mansilla Alvarez L, Bulant C, Ares G, Feijóo R, Blanco P (2022) A mid-fidelity numerical method for blood flow in deformable vessels. Comput Methods Appl Mech Eng 392:114654

    Article  MathSciNet  Google Scholar 

  54. Korelc J, Šolinc U, Wriggers P (2010) An improved eas brick element for finite deformation. Comput Mech 46(4):641–659

    Article  Google Scholar 

  55. Schröder J, Wick T, Reese S, Wriggers P, Müller R, Kollmannsberger S, Kästner M, Schwarz A, Igelbüscher M, Viebahn N et al (2021) A selection of benchmark problems in solid mechanics and applied mathematics. Arch Comput Methods Eng 28(2):713–751

    Article  MathSciNet  Google Scholar 

  56. Reese S, Wriggers P, Reddy B (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75(3):291–304

    Article  MathSciNet  Google Scholar 

  57. Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Meth Eng 37(15):2551–2568

    Article  Google Scholar 

  58. Merlini T, Morandini M (2005) The helicoidal modeling in computational finite elasticity. Part iii: finite element approximation for non-polar media. Int J Solids Struct 42(24–25):6475–6513

    Article  Google Scholar 

  59. Chavan KS, Lamichhane BP, Wohlmuth BI (2007) Locking-free finite element methods for linear and nonlinear elasticity in 2d and 3d. Comput Methods Appl Mech Eng 196(41–44):4075–4086

    Article  Google Scholar 

  60. Arbind A, Reddy JN (2021) A general higher-order shell theory for compressible isotropic hyperelastic materials using orthonormal moving frame. Int J Numer Meth Eng 122(1):235–269

    Article  MathSciNet  Google Scholar 

  61. Mansilla Alvarez LA, Blanco PJ, Bulant CA, Dari E, Veneziani A, Feijóo RA (2017) Transversally enriched pipe element method (tepem): an effective numerical approach for blood flow modeling. Int J Num Meth Biomed Eng 33(4)

  62. Mansilla Alvarez LA, Blanco PJ, Bulant CA, Feijóo RA (2019) Towards fast hemodynamic simulations in large-scale circulatory networks. Comput Methods Appl Mech Eng 344:734–765

    Article  MathSciNet  Google Scholar 

  63. Hariton I, Gasser T, Holzapfel G, Hamza M, Debotton G (2005) How to incorporate collagen fibers orientations in an arterial bifurcation. In: Proceedings of the Third IASTED international conference on biomechanics, pp 101–104

Download references

Acknowledgements

LAMA is supported in part by Brazilian agency CNPq (Grant Number 302210/2020-2). PJB and RAF are supported in part by Brazilian agencies CNPq (Grant Numbers 301224/2016-1, 407751/2018-1 and 301636/2019-2), and FAPESP (Grant Number 2014/50889-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Mansilla Alvarez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansilla Alvarez, L.A., Ares, G.D., Feijóo, R.A. et al. A mixed-order interpolation solid element for efficient arterial wall simulations. Comput Mech 73, 67–87 (2024). https://doi.org/10.1007/s00466-023-02356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02356-1

Keywords

Navigation