Skip to main content
Log in

A simple geometrically exact finite element for thin shells—Part 1: statics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a new triangular nonlinear shell finite element with a novel kinematic model suitable for simulation with large displacements and rotations, herein introduced as “T6-3iKL”. This element has 6 nodes, a quadratic displacement field, and a linear rotation field based on Rodrigues incremental rotation parameters, giving in total 21 degrees of freedom. The novelty of this shell element concerns a new kinematic model with properties from Kirchhoff-Love shell theory, making it possible to eliminate the drilling DOF in the rotation field (compared to Mindlin-Reissner models), approximating the rotation continuity between adjacent elements by a single scalar and allowing multiple branch connections in the mesh, making this element very simple and interesting, with no artificial parameters imputed by the code (such as penalties or Lagrange multipliers). The element permits the implementation of different material constitutive equations, including elastic anisotropic models, and the thickness of the shell is optionally allowed to change through the simulation. The model developed in this article is numerically implemented and the results compared to different references in multiple examples, showing the consistency and reliability of the new formulation. It is believed that this new versatile triangular shell element, with no necessity of artificial penalty calibration, simple kinematics, a relatively small number of DOFs, geometric exactness, the possibility to use 3D material constitutive models, and easy connection with multiple branched shells and beams, implemented together with reliable mesh generation, may be an effective option for shell simulation in many engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part i: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267–304. https://doi.org/10.1016/0045-7825(89)90002-9

    Article  MATH  Google Scholar 

  2. Pimenta PM (1993) On a geometrically-exact finite-strain shell model. In: Proceedings of the 3rd Pan-American congress on applied mechanics

  3. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518. https://doi.org/10.1007/s00466-003-0458-8

    Article  MATH  Google Scholar 

  4. Pimenta PM, Campello EMB, Wriggers P (2004) A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element. Comput Mech 34(3):181–193. https://doi.org/10.1007/s00466-004-0564-2

    Article  MATH  Google Scholar 

  5. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Costa e Silva C (2020) Geometrically exact shear-rigid shell and rod models. PhD thesis, University of Sao Paulo

  7. Costa e Silva C, Maassen SF, Pimenta PM et al (2021) On the simultaneous use of simple geometrically exact shear-rigid rod and shell finite elements. Comput Mech 67(3):867–881. https://doi.org/10.1007/s00466-020-01967-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Ivannikov V, Tiago C, Pimenta PM (2015) Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model. Comput Methods Appl Mech Eng 294:210–244. https://doi.org/10.1016/j.cma.2015.05.018

    Article  MATH  Google Scholar 

  9. Sanchez ML, Pimenta PM, Costa e Silva C (2020) A simple fully nonlinear Kirchhoff-Love shell finite element. Lat Am J Solids Struct. https://doi.org/10.1590/1679-78256120

    Article  Google Scholar 

  10. Sanchez ML, Costa e Silva C, Pimenta PM (2021) A simple fully nonlinear Kirchhoff-Love shell finite element with thickness variation. In: CILAMCE-PANACM congress

  11. Imamovic I, Ibrahimbegovic A, Hajdo E (2019) Geometrically exact initially curved Kirchhoff’s planar elasto-plastic beam. Coupled Syst Mech 8(6):537–553. https://doi.org/10.12989/csm.2019.8.6.537

    Article  Google Scholar 

  12. Pimenta PM, Almeida Neto ES, Campello EMB (2010) A fully nonlinear thin shell model of Kirchhoff-Love type. In: New trends in thin structures: formulation, optimization and coupled problems. Springer-Verlag, Wien, pp. 29–58, https://doi.org/10.1007/978-3-7091-0231-2_2

  13. Viebahn N, Pimenta PM, Schröder J (2017) A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy. Comput Mech 59(2):281–297. https://doi.org/10.1007/s00466-016-1343-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Timoshenko S, Woinowsky-Krieger S et al (1959) Theory of plates and shells, vol 2. McGraw-hill, New York

    MATH  Google Scholar 

  15. Wisniewski K (2010) Finite rotation shells. Basic equations and finite elements for Reissner kinematics. CIMNE-Springer, Berlin

    MATH  Google Scholar 

  16. Ugural AC (2017) Plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Ventsel E, Krauthammer T, Carrera E (2002) Thin plates and shells: theory, analysis, and applications. Appl Mech Rev 55(4):B72–B73. https://doi.org/10.1115/1.1483356

    Article  Google Scholar 

  18. Le Van A (2017) Nonlinear theory of elastic plates. Elsevier, Oxford

  19. Chapelle D, Bathe KJ (2010) The finite element analysis of shells-fundamentals. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  20. Rodrigues O (1840) Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. J Math Pures Appl 5(380–400):5

    Google Scholar 

  21. Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48(2):195–211. https://doi.org/10.1007/s00466-011-0584-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Krysl P (2022) Robust flat-facet triangular shell finite element. Int J Numer Methods Eng. https://doi.org/10.1002/nme.6944

    Article  MathSciNet  Google Scholar 

  23. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer International Publishing, Switzerland

  24. Brank B, Korelc J, Ibrahimbegović A (2002) Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation. Comput Struct 80(9–10):699–717. https://doi.org/10.1016/S0045-7949(02)00042-1

    Article  Google Scholar 

  25. Costa e Silva C, Maassen SF, Pimenta PM et al (2019) A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods. Comput Mech. https://doi.org/10.1007/s00466-019-01800-5

    Article  MATH  Google Scholar 

  26. Ibrahimbegović A, Frey F (1994) Stress resultant geometrically nonlinear shell theory with drilling rotations-part ii. Computational aspects. Comput Methods Appl Mech Eng 118(3–4):285–308. https://doi.org/10.1016/0045-7825(94)90004-3

    Article  MATH  Google Scholar 

  27. Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1–3):85–155. https://doi.org/10.1016/0045-7825(82)90069-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Pimenta PM, Campello EMB (2001) Geometrically nonlinear analysis of thin-walled space frames. In: Proceedings of the second european conference on computational mechanics, II ECCM, Cracow, Poland

  29. Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational dofs and general hyperelasticity. Part 1: Rods. Comput Mech 42(5):715–732. https://doi.org/10.1007/s00466-008-0271-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78(9):1094–1112. https://doi.org/10.1002/nme.2528

    Article  MathSciNet  MATH  Google Scholar 

  31. Costa e Silva C (2020) Geometrically exact shear-rigid shell and rod models. PhD thesis, Polytechnic School at University of São Paulo

  32. Wriggers P (2008) Nonlinear finite element methods. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  33. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445. https://doi.org/10.1016/S0020-7683(02)00458-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Schröder J, Viebahn N, Balzani D et al (2016) A novel mixed finite element for finite anisotropic elasticity; the SKA-element. Comput Methods Appl Mech Eng 310:475–494. https://doi.org/10.1016/j.cma.2016.06.029

    Article  MATH  Google Scholar 

  35. Washizu K (1968) Variational methods in elasticity and plasticity. Int Ser Monogr Aeronaut Astronaut. Pergamon press, Oxford

  36. Schröder J, Neff P (2010) Poly-, quasi-and rank-one convexity in applied mechanics, vol 516. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  37. Truesdell C, Noll W (2004) The non-linear field theories of mechanics. In: Antman SS (ed) The non-linear field theories of mechanics. Springer-Verlag, Berlin pp. 1–579, https://doi.org/10.1007/978-3-662-10388-3

  38. Ivannikov V, Tiago C, Pimenta PM (2014) On the boundary conditions of the geometrically nonlinear Kirchhoff-Love shell theory. Int J Solids Struct 51(18):3101–3112

    Article  MATH  Google Scholar 

  39. Ko Y, Lee Y, Lee PS et al (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206. https://doi.org/10.1016/j.compstruc.2017.08.003

    Article  Google Scholar 

  40. Young WC, Budynas RG, Sadegh AM (2012) Roark’s formulas for stress and strain. McGraw-Hill Education, New York

    Google Scholar 

  41. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part iii: Computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1):21–70. https://doi.org/10.1016/0045-7825(90)90094-3

    Article  MATH  Google Scholar 

  42. Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in Biot stresses: Theory and finite element formulation. Int J Numer Methods Eng 36(12):2049–2071. https://doi.org/10.1002/nme.1620361207

    Article  MATH  Google Scholar 

  43. Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569. https://doi.org/10.1016/S0168-874X(03)00218-X

    Article  Google Scholar 

  44. Başar Y, Ding Y (1992) Finite-rotation shell elements for the analysis of finite-rotation shell problems. Int J Numer Methods Eng 34(1):165–169. https://doi.org/10.1002/nme.1620340109

    Article  Google Scholar 

  45. Buechter N, Ramm E (1992) Shell theory versus degeneration-a comparison in large rotation finite element analysis. Int J Numer Methods Eng 34(1):39–59. https://doi.org/10.1002/nme.1620340105

    Article  MATH  Google Scholar 

  46. Wagner W, Gruttmann F (2020) An improved quadrilateral shell element based on the Hu-Washizu functional. Adv Model Simul Eng Sci 7(1):1–27

    Article  Google Scholar 

  47. Gruttmann F, Wagner W (2005) Structural analysis of composite laminates using a mixed hybrid shell element. Comput Mech 37(6):479–497

    Article  MATH  Google Scholar 

  48. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64(5):635–666

    Article  MATH  Google Scholar 

  49. Krysl P, Chen JS (2023) Benchmarking computational shell models. Arch Comput Methods Eng 30(1):301–315

    Article  Google Scholar 

  50. Knight NF Jr (1997) Raasch challenge for shell elements. AIAA J 35(2):375–381. https://doi.org/10.2514/3.13513

    Article  MATH  Google Scholar 

  51. MacNeal RH, Wilson CT, Harder RL et al (1998) The treatment of shell normals in finite element analysis. Finite Elem Anal Des 30(3):235–242. https://doi.org/10.1016/S0168-874X(98)00035-3

    Article  MATH  Google Scholar 

  52. Schoop H, Hornig J, Wenzel T (2002) Remarks on Raasch’s hook. Technische Mechanik-Eur J Eng Mech 22(4):259–270

    Google Scholar 

  53. Krysl P (2017) Finite element modeling with abaqus and python for thermal and stress analysis. Pressure Cooker Press, San Diego

  54. Lavrenčič M, Brank B (2020) Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion. Comput Mech 65(1):177–192

    Article  MathSciNet  MATH  Google Scholar 

  55. Oliveira IP, Campello EMB, Pimenta PM (2006) Finite element analysis of the wrinkling of orthotropic membranes. In: European conference on computational mechanics, Lisbon, Portugal, https://doi.org/10.1007/1-4020-5370-3_661

Download references

Acknowledgements

Matheus, Paulo, and Adnan gratefully acknowledge the support by ANR-FAPESP through the thematic grant 2020/13362-1 with the title “Mechanics, Stochastics and Control with Code-Coupling: System-of-Multibody-Systems point-of-view to Optimize Off-Shore/In-Land Farms of Wind Turbines with Flexible Blades” (MS3C project) that made this work possible. Matheus Lucci Sanchez thankfully acknowledges Clark Solutions, where he works as a project engineer, for financial support, knowledge, applicability, and industrial experience. P. M. Pimenta acknowledges support by CNPq under grant 308142/2018-7 and the Alexander von Humboldt Foundation for the Georg Forster Award that made possible his stays at the Universities of Duisburg-Essen and Hannover in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus L. Sanchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, M.L., Pimenta, P.M. & Ibrahimbegovic, A. A simple geometrically exact finite element for thin shells—Part 1: statics. Comput Mech 72, 1119–1139 (2023). https://doi.org/10.1007/s00466-023-02339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02339-2

Keywords

Navigation