Skip to main content
Log in

Clustering analysis for elastodynamic homogenization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a reduced-order method for the elastodynamic homogenization of periodic composites. With the help of Bloch-wave expansion and Green’s function, the Lippmann–Schwinger equations relating the dynamic field variable tensors of strain, velocity, stress and linear momentum are obtained. Then the constitutive relation of the averaged dynamic field tensors and the dispersion relation between frequency and wave vector in Willis theory are formulated explicitly. Using the data compression algorithm, k-means clustering, we decompose computational domain into clusters of possibly disjoint cells. The Lippmann–Schwinger equations are then discretized and solved efficiently. Numerical tests for three-dimensional particle-reinforced composites verify the effectiveness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Voigt W (1889) On the relation between the elasticity constants of isotropic bodies. Ann Phys Chem 274:573–587

    Article  Google Scholar 

  2. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A Math Phys Sci 241(1226):376–396

    MathSciNet  MATH  Google Scholar 

  3. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  MathSciNet  MATH  Google Scholar 

  4. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  5. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Article  Google Scholar 

  6. Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8(10):248

    Article  Google Scholar 

  7. Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184

    Article  Google Scholar 

  8. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376–379

    Article  Google Scholar 

  9. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022

    Article  Google Scholar 

  10. Bensoussan A, Lions JL, Papanicolaou G (2011) Asymptotic Analysis for Periodic Structures, vol 374. American Mathematical Society

    MATH  Google Scholar 

  11. Sánchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lecture Note in Physics, vol 320. Springer, pp 57–65

    Google Scholar 

  12. Antonakakis T, Craster RV, Guenneau S (2014) Homogenisation for elastic photonic crystals and dynamic anisotropy. J Mech Phys Solids 71:84–96

    Article  MathSciNet  MATH  Google Scholar 

  13. Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc R Soc A Math Phys Eng Sci 466(2120):2341–2362

    MathSciNet  MATH  Google Scholar 

  14. Nolde E, Craster R, Kaplunov J (2011) High frequency homogenization for structural mechanics. J Mech Phys Solids 59(3):651–671

    Article  MathSciNet  MATH  Google Scholar 

  15. Willis J (1980) A polarization approach to the scattering of elastic waves—I. Scattering by a single inclusion. J Mech Phys Solids 28(5–6):287–305

    Article  MathSciNet  MATH  Google Scholar 

  16. Willis J (1980) A polarization approach to the scattering of elastic waves—II. Multiple scattering from inclusions. J Mech Phys Solids 28(5–6):307–327

    Article  MathSciNet  MATH  Google Scholar 

  17. Milton GW, Willis JR (2007) On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A Math Phys Eng Sci 463(2079):855–880

    MathSciNet  MATH  Google Scholar 

  18. Willis JR (2011) Effective constitutive relations for waves in composites and metamaterials. Proc R Soc A Math Phys Eng Sci 467(2131):1865–1879

    MathSciNet  MATH  Google Scholar 

  19. Nassar H, He QC, Auffray N (2016) On asymptotic elastodynamic homogenization approaches for periodic media. J Mech Phys Solids 88:274–290

    Article  MathSciNet  MATH  Google Scholar 

  20. Nemat-Nasser S, Srivastava A (2011) Overall dynamic constitutive relations of layered elastic composites. J Mech Phys Solids 59(10):1953–1965

    Article  MathSciNet  MATH  Google Scholar 

  21. Srivastava A, Nemat-Nasser S (2012) Overall dynamic properties of three-dimensional periodic elastic composites. Proc R Soc A Math Phys Eng Sci 468(2137):269–287

    MathSciNet  MATH  Google Scholar 

  22. Norris AN, Shuvalov A, Kutsenko A (2012) Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc R Soc A Math Phys Eng Sci 468(2142):1629–1651

    MathSciNet  MATH  Google Scholar 

  23. Nassar H, He QC, Auffray N (2015) Willis elastodynamic homogenization theory revisited for periodic media. J Mech Phys Solids 77:158–178

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62(6):1443–1460

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheng G, Li X, Nie Y, Li H (2019) FEM-cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu X, Zhang L, Tang S (2021) Adaptive selection of reference stiffness in virtual clustering analysis. Comput Methods Appl Mech Eng 376:113621

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu Z, Kafka OL, Yu C, Liu WK (2018) In: Advances in computational plasticity. Springer, pp 221–242

  29. Han X, Gao J, Fleming M, Xu C, Xie W, Meng S, Liu WK (2020) Efficient multiscale modeling for woven composites based on self-consistent clustering analysis. Comput Methods Appl Mech Eng 364:112929

    Article  MathSciNet  MATH  Google Scholar 

  30. Nie Y, Li Z, Cheng G (2021) Efficient prediction of the effective nonlinear properties of porous material by FEM-cluster based analysis (FCA). Comput Methods Appl Mech Eng 383:113921

    Article  MathSciNet  MATH  Google Scholar 

  31. Shakoor M, Kafka OL, Yu C, Liu WK (2019) Data science for finite strain mechanical science of ductile materials. Comput Mech 64(1):33–45

  32. Li H (2019) Statistics Learning Method. Tsinghua University Press, Beijing (in Chinese)

    Google Scholar 

  33. Giraud C (2014) Introduction to High-dimensional Statistics. Chapman & Hall/CRC Monographs on Statistics & Applied Probability

  34. Minagawa S, Nemat-Nasser S (1976) Harmonic waves in three-dimensional elastic composites. Int J Solids Struct 12(11):769–777

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported partially by NSFC under Grant Numbers 11832001, 11988102, and 11890681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Constitutive tensors

Appendix: A Constitutive tensors

In this appendix, denote

$$\begin{aligned} \varvec{f} *\varvec{g}=\int _T \varvec{f}(\varvec{x}-\varvec{y})\varvec{g}(\varvec{y})\textrm{d} \varvec{y}, \end{aligned}$$
(59)

and then Lippmann–Schwinger equations read

$$\begin{aligned} \begin{aligned}&\tilde{\varvec{\varepsilon }}-\tilde{\varvec{E}}=\dfrac{1}{|T|}(\varvec{\varPhi }*\tilde{\varvec{\tau }} +\varvec{\varPsi }*\tilde{\varvec{\pi }}),\\&\tilde{\varvec{v}}-\tilde{\varvec{V}}=\dfrac{1}{|T|}(\varvec{\varTheta }*\tilde{\varvec{\tau }}+\varvec{\varGamma }*\tilde{\varvec{\pi }}). \end{aligned} \end{aligned}$$
(60)

\(\varvec{\varPhi }_{\varvec{\xi }},\varvec{\varPsi }_{\varvec{\xi }},\varvec{\varTheta }_{\varvec{\xi }},\varvec{\varGamma }_{\varvec{\xi }} \in {\mathbb {R}}\) leads to the properties

$$\begin{aligned} \varvec{\varPhi }({\varvec{x}})= & {} \varvec{\varPhi }^*(-{\varvec{x}}),\ \varvec{\varPsi }({\varvec{x}})=\varvec{\varPsi }^*(-{\varvec{x}}), \nonumber \\ \varvec{\varTheta }({\varvec{x}})= & {} \varvec{\varTheta }^*(-{\varvec{x}}),\ \varvec{\varGamma }({\varvec{x}})=\varvec{\varGamma }^*(-{\varvec{x}}). \end{aligned}$$
(61)

\(\varvec{\varPhi }_{\varvec{0}}=\varvec{0},\varvec{\varPsi }_{\varvec{0}}=\varvec{0}, \varvec{\varTheta }_{\varvec{0}}=\varvec{0}, \varvec{\varGamma }_{\varvec{0}}=\varvec{0}\) shows that

$$\begin{aligned} \begin{aligned} \int _T \varvec{\varPhi }(\varvec{x}-\varvec{y})\textrm{d} \varvec{x}&=\varvec{0},\int _T \varvec{\varPsi }(\varvec{x}-\varvec{y})\textrm{d} \varvec{x}=\varvec{0},\\ \int _T \varvec{\varTheta }(\varvec{x}-\varvec{y})\textrm{d} \varvec{x}&=\varvec{0},\int _T \varvec{\varGamma }(\varvec{x}-\varvec{y})\textrm{d} \varvec{x}=\varvec{0},\\ \int _T \varvec{\varPhi }(\varvec{x}-\varvec{y})\textrm{d} \varvec{y}&=\varvec{0},\int _T \varvec{\varPsi }(\varvec{x}-\varvec{y})\textrm{d} \varvec{y}=\varvec{0}, \\ \int _T \varvec{\varTheta }(\varvec{x}-\varvec{y})\textrm{d} \varvec{y}&=\varvec{0},\int _T \varvec{\varGamma }(\varvec{x}-\varvec{y})\textrm{d} \varvec{y}=\varvec{0}. \end{aligned} \end{aligned}$$
(62)

The fact that \(\varvec{\varPhi }_{\varvec{\xi }},\varvec{\varPsi }_{\varvec{\xi }},\varvec{\varTheta }_{\varvec{\xi }},\varvec{\varGamma }_{\varvec{\xi }} \) have symmetry about their subscripts leads to

$$\begin{aligned} \varPhi _{ijkl}= & {} \varPhi _{klij},\quad \varPsi _{ijk}=\varPsi _{jik}=-\varTheta _{kij}=-\varTheta _{kji}, \nonumber \\ \varGamma _{ij}= & {} \varGamma _{ji}. \end{aligned}$$
(63)

For ease of notations, we rewrite (63) as

$$\begin{aligned} \varvec{\varPhi }=\varvec{\varPhi }^T,\ \varvec{\varPsi }^T=-\varvec{\varTheta },\ \varvec{\varTheta }^T=-\varvec{\varPsi },\ \varvec{\varGamma }=\varvec{\varGamma }^T, \end{aligned}$$
(64)

and treat other tensors transpose and complex conjugate transpose (with superscript \(\cdot ^H\)) in the same way.

Denote

$$\begin{aligned} \varvec{f}_{\delta }*\varvec{g}=\int _T \varvec{f}(\varvec{x})\delta (\varvec{x}-\varvec{y}) \varvec{g}(\varvec{y})\textrm{d} \varvec{y}=\varvec{f}(\varvec{x})\varvec{g}(\varvec{x}), \end{aligned}$$
(65)

and rewrite (60) as

$$\begin{aligned}{} & {} \Bigg ( \left[ \begin{array}{cc} \delta &{}0 \\ 0 &{} \delta \end{array} \right] -\dfrac{1}{|T|} \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] \Bigg ) * \nonumber \\{} & {} \quad \left[ \begin{array}{c} \tilde{\varvec{\varepsilon }} \\ \tilde{\varvec{v}} \end{array} \right] = \left[ \begin{array}{c} \tilde{\varvec{E}} \\ \tilde{\varvec{V}} \end{array} \right] . \end{aligned}$$
(66)
$$\begin{aligned} \begin{aligned}\left[ \begin{array}{c} \tilde{\varvec{\Sigma }} \\ \tilde{\varvec{P}} \end{array} \right]&=\dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{c} \tilde{\varvec{\sigma }} \\ \tilde{\varvec{p}} \end{array} \right] \\&= \dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{cc} \varvec{C}_{\delta }&{}0 \\ 0 &{} \varvec{\rho }_{\delta } \end{array} \right] * \left[ \begin{array}{c} \tilde{\varvec{\varepsilon }} \\ \tilde{\varvec{v}} \end{array} \right] \\&=\dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{cc} \varvec{C}_{\delta }&{}0 \\ 0 &{} \varvec{\rho }_{\delta } \end{array} \right] \\&\quad *\Bigg ( \left[ \begin{array}{cc} \delta &{}0 \\ 0 &{} \delta \end{array} \right] -\dfrac{1}{|T|} \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] \Bigg )^{-1} \\&\quad *\left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] \left[ \begin{array}{c} \tilde{\varvec{E}} \\ \tilde{\varvec{V}} \end{array} \right] , \end{aligned} \end{aligned}$$
(67)

where \( 1 \) represents constant function with value equals to 1. We remark that operators in (67) are real except \(\varvec{\varPhi },\varvec{\varPsi },\varvec{\varTheta },\varvec{\varGamma }\).

The macroscopic constitutive relation is expressed explicitly as

$$\begin{aligned}{} & {} \left[ \begin{array}{cc} \overline{\tilde{\varvec{C}}} &{} \overline{\tilde{\varvec{S^1}}} \\ \overline{\tilde{\varvec{S^2}}} &{} \overline{\tilde{\varvec{\rho }}} \end{array} \right] \nonumber \\= & {} \dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{cc} \varvec{C}_{\delta }&{}0 \\ 0 &{} \varvec{\rho }_{\delta } \end{array} \right] \nonumber \\{} & {} \quad * \Bigg ( \left[ \begin{array}{cc} \delta &{}0 \\ 0 &{} \delta \end{array} \right] -\dfrac{1}{|T|} \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] \Bigg )^{-1} \nonumber \\{} & {} \quad *\left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] . \end{aligned}$$
(68)

Performing power series expansion to the inverse operator, and we obtain the expansion of macroscopic constitutive relation.

Zero-order:

$$\begin{aligned} \begin{aligned}&\left[ \begin{array}{cc} \overline{\tilde{\varvec{C}}}^{(0)} &{} \overline{\tilde{\varvec{S^1}}}^{(0)} \\ \overline{\tilde{\varvec{S^2}}}^{(0)} &{} \overline{\tilde{\varvec{\rho }}}^{(0)} \end{array} \right] \\&\quad =\dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{cc} \varvec{C}_{\delta }&{}0 \\ 0 &{} \varvec{\rho }_{\delta } \end{array} \right] * \left[ \begin{array}{cc} \delta &{}0 \\ 0 &{} \delta \end{array} \right] * \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] \\ {}&\quad = \dfrac{1}{|T|}\left[ \begin{array}{cc} 1 *\varvec{C}_{\delta }* 1 &{}0 \\ 0 &{} 1 *\varvec{\rho }_{\delta }* 1 \end{array} \right] \\ {}&\quad = \dfrac{1}{|T|}\left[ \begin{array}{cc} \int _T \varvec{C}(\varvec{x})\delta (\varvec{x}-\varvec{y})\textrm{d}\varvec{x}\textrm{d}\varvec{y}&{}0 \\ 0 &{} \int _T \varvec{\rho }(\varvec{x})\delta (\varvec{x}-\varvec{y})\textrm{d}\varvec{x}\textrm{d}\varvec{y} \end{array} \right] \\&\quad =\left[ \begin{array}{cc} \frac{1}{|T|}\int _T \varvec{C}(\varvec{x})\textrm{d}\varvec{x}&{}0 \\ 0 &{} \frac{1}{|T|}\int _T \varvec{\rho }(\varvec{x})\textrm{d}\varvec{x} \end{array} \right] . \end{aligned} \end{aligned}$$
(69)

It follows that

$$\begin{aligned} \overline{\tilde{\varvec{C}}}^{(0)}=\overline{\tilde{\varvec{C}}}^{(0)T}=\overline{\tilde{\varvec{C}}}^{(0)H},\overline{\tilde{\varvec{\rho }}}^{(0)}=\overline{\tilde{\varvec{\rho }}}^{(0)T}=\overline{\tilde{\varvec{\rho }}}^{(0)H}. \end{aligned}$$
(70)

First-order:

$$\begin{aligned}&\left[ \begin{array}{cc} \overline{\tilde{\varvec{C}}}^{(1)} &{} \overline{\tilde{\varvec{S^1}}}^{(1)} \\ \overline{\tilde{\varvec{S^2}}}^{(1)} &{} \overline{\tilde{\varvec{\rho }}}^{(1)} \end{array} \right] \\&\quad =\dfrac{1}{|T|} \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] * \left[ \begin{array}{cc} \varvec{C}_{\delta }&{}0 \\ 0 &{} \varvec{\rho }_{\delta } \end{array} \right] \\&\qquad * \dfrac{1}{|T|} \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] * \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] \\ {}&\quad = \dfrac{1}{|T|^2}\left[ \begin{array}{cc} \varvec{C}_{\delta }*\varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{C}_{\delta }*\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\rho }_{\delta }*\varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\rho }_{\delta }*\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] \\ {}&\quad = \dfrac{1}{|T|^2}\left[ \begin{array}{cc} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})(\varvec{C}(\varvec{y})-\varvec{C}^0) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \quad \int _T \varvec{C}(\varvec{x})\varvec{\varPsi }(\varvec{x}-\varvec{y})(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \int _T \varvec{\rho }(\varvec{x})\varvec{\varTheta }(\varvec{x}-\varvec{y})(\varvec{C}(\varvec{y})-\varvec{C}^0) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \quad \int _T \varvec{\rho }(\varvec{x})\varvec{\varGamma }(\varvec{x}-\varvec{y})(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \end{array} \right] \\ {}&\quad =\!=!=\!={(61)(62) } \dfrac{1}{|T|^2}\\&\left[ \begin{array}{cc} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})\varvec{C}(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \quad \int _T \varvec{C}(\varvec{x})\varvec{\varPsi }(\varvec{x}-\varvec{y})\varvec{\rho }(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \int _T \varvec{\rho }(\varvec{x})\varvec{\varTheta }(\varvec{x}-\varvec{y})\varvec{C}(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\ \quad \int _T \varvec{\rho }(\varvec{x})\varvec{\varGamma }(\varvec{x}-\varvec{y})\varvec{\rho }(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \end{array} \right] . \end{aligned}$$

It follows that

$$\begin{aligned} \begin{aligned} \overline{\tilde{\varvec{C}}}^{(1)H}&=\Big (\frac{1}{|T|^2} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})\varvec{C}(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\Big )^H \\&=\frac{1}{|T|^2} \int _T \varvec{C}^T(\varvec{y})\varvec{\varPhi }^H(\varvec{x}-\varvec{y})\varvec{C}^T(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\&=\!=!=\!={(61)(64)} \frac{1}{|T|^2} \int _T \varvec{C}(\varvec{y})\varvec{\varPhi }(\varvec{y}-\varvec{x})\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\&=\frac{1}{|T|^2} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})\varvec{C}(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \\&=\overline{\tilde{\varvec{C}}}^{(1)}. \end{aligned} \end{aligned}$$
(71)

Similarly,

$$\begin{aligned} \overline{\tilde{\varvec{\rho }}}^{(1)H}= & {} \overline{\tilde{\varvec{\rho }}}^{(1)}, \end{aligned}$$
(72)
$$\begin{aligned} \overline{\tilde{\varvec{S^1}}}^{(1)H}= & {} \Big (\frac{1}{|T|^2} \int _T \varvec{C}(\varvec{x})\varvec{\varPsi }(\varvec{x}-\varvec{y})\varvec{\rho }(\varvec{y}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\Big )^H \nonumber \\= & {} \frac{1}{|T|^2} \int _T \varvec{\rho }(\varvec{y})\varvec{\varPsi }^H(\varvec{x}-\varvec{y})\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y} \nonumber \\{} & {} =\!=!=\!={(64)} \frac{1}{|T|^2} \int _T \varvec{\rho }(\varvec{y})(-\varvec{\varTheta }(\varvec{x}-\varvec{y}))^*\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\nonumber \\{} & {} =\!=!=\!={(61)} -\frac{1}{|T|^2} \int _T \varvec{\rho }(\varvec{y})\varvec{\varTheta }(\varvec{y}-\varvec{x})\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\nonumber \\= & {} -\overline{\tilde{\varvec{S^2}}}^{(1)}. \end{aligned}$$
(73)

Second order:

$$\begin{aligned}&\left[ \begin{array}{cc} \overline{\tilde{\varvec{C}}}^{(2)} &{} \overline{\tilde{\varvec{S^1}}}^{(2)} \\ \overline{\tilde{\varvec{S^2}}}^{(2)} &{} \overline{\tilde{\varvec{\rho }}}^{(2)} \end{array} \right] \\&=\dfrac{1}{|T|^3} \left[ \begin{array}{cc} 1 *\varvec{C}_{\delta }&{}0 \\ 0 &{} 1 *\varvec{\rho }_{\delta } \end{array} \right] \\&\quad * \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] ^2 * \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] \\ {}&=\dfrac{1}{|T|^3} \left[ \begin{array}{cc} 1 *\varvec{C}_{\delta }&{}0 \\ 0 &{} 1 *\varvec{\rho }_{\delta } \end{array} \right] * \\&\quad \left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] \\&\quad *\left[ \begin{array}{cc} \varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta })&{}\varvec{\varPsi }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ \varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{}\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] * \left[ \begin{array}{cc} 1 &{}0 \\ 0 &{} 1 \end{array} \right] \\ {}&=\!=!=\!={ (62) } \dfrac{1}{|T|^3} \left[ \begin{array}{cc} 1 *\varvec{C}_{\delta }*\varvec{\varPhi }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{} 1 *\varvec{C}_{\delta }*\varvec{\varPsi }* (\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \\ 1 *\varvec{\rho }_{\delta }*\varvec{\varTheta }*(\varvec{C}_{\delta }-\varvec{C}^0_{\delta }) &{} 1 *\varvec{\rho }_{\delta }*\varvec{\varGamma }*(\varvec{\rho }_{\delta }-\varvec{\rho }^0_{\delta }) \end{array} \right] *\\&\left[ \begin{array}{cc} \varvec{\varPhi }*\varvec{C}_{\delta }* 1 &{}\varvec{\varPsi }*\varvec{\rho }_{\delta }* 1 \\ \varvec{\varTheta }*\varvec{C}_{\delta }* 1 &{}\varvec{\varGamma }*\varvec{\rho }_{\delta }* 1 \end{array} \right] . \end{aligned}$$

It follows that

$$\begin{aligned} \begin{aligned} \overline{\tilde{\varvec{C}}}^{(2)H}&=\Big (\frac{1}{|T|^3} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})(\varvec{C}(\varvec{y})-\varvec{C}^0)\\&\quad \times \varvec{\varPhi }(\varvec{y}-\varvec{z})\varvec{C}(\varvec{z}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z}\Big )^H \\&\quad +\Big (\frac{1}{|T|^3} \int _T \varvec{C}(\varvec{x})\varvec{\varPsi }(\varvec{x}-\varvec{y})(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0)\\&\quad \times \varvec{\varTheta }(\varvec{y}-\varvec{z})\varvec{C}(\varvec{z}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z}\Big )^H\\&=\!=!=\!={(61)(64)} \frac{1}{|T|^3} \int _T \varvec{C}(\varvec{z})\varvec{\varPhi }(\varvec{z}-\varvec{y})(\varvec{C}(\varvec{y})-\varvec{C}^0)\\&\quad \times \varvec{\varPhi }(\varvec{y}-\varvec{x})\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z} \\&\quad +\int _T \varvec{C}(\varvec{z})\big (-\varvec{\varPsi }(\varvec{z}-\varvec{y})\big )(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0)\\&\quad \times \big (-\varvec{\varTheta }(\varvec{y}-\varvec{x})\big )\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z} =\overline{\tilde{\varvec{C}}}^{(2)}. \end{aligned} \end{aligned}$$
(74)

Similarly,

$$\begin{aligned} \overline{\tilde{\varvec{\rho }}}^{(2)H}= & {} \overline{\tilde{\varvec{\rho }}}^{(2)}, \end{aligned}$$
(75)
$$\begin{aligned} \overline{\tilde{\varvec{S^1}}}^{(2)H}= & {} \Big (\frac{1}{|T|^3} \int _T \varvec{C}(\varvec{x})\varvec{\varPhi }(\varvec{x}-\varvec{y})(\varvec{C}(\varvec{y})-\varvec{C}^0)\nonumber \\{} & {} \times \varvec{\varPsi }(\varvec{y}-\varvec{z})\varvec{\rho }(\varvec{z}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z}\Big )^H \nonumber \\{} & {} +\Big (\frac{1}{|T|^3} \int _T \varvec{C}(\varvec{x})\varvec{\varPsi }(\varvec{x}-\varvec{y})(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0)\nonumber \\{} & {} \times \varvec{\varGamma }(\varvec{y}-\varvec{z})\varvec{\rho }(\varvec{z}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z}\Big )^H\nonumber \\{} & {} =\!=!=\!={(61)(64)} \frac{1}{|T|^3} \int _T \varvec{\rho }(\varvec{z})\big (-\varvec{\varTheta }(\varvec{z}-\varvec{y})\big )(\varvec{C}(\varvec{y})-\varvec{C}^0)\nonumber \\{} & {} \times \, \varvec{\varPhi }(\varvec{y}-\varvec{x})\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z} \nonumber \\{} & {} +\int _T \varvec{\rho }(\varvec{z})\varvec{\varGamma }(\varvec{z}-\varvec{y})(\varvec{\rho }(\varvec{y})-\varvec{\rho }^0)\nonumber \\{} & {} \big (-\varvec{\varTheta }(\varvec{y}-\varvec{x})\big )\varvec{C}(\varvec{x}) \textrm{d}\varvec{x}\textrm{d}\varvec{y}\textrm{d}\varvec{z}\nonumber \\{} & {} =-\overline{\tilde{\varvec{S^2}}}^{(2)H}. \end{aligned}$$
(76)

By the same token, higher order terms also satisfy the same equations. Thus we obtain

$$\begin{aligned} \overline{\tilde{\varvec{C}}}=\overline{\tilde{\varvec{C}}}^{H},\overline{\tilde{\varvec{\rho }}}=\overline{\tilde{\varvec{\rho }}}^{H},\overline{\tilde{\varvec{S^1}}}^{H}=-\overline{\tilde{\varvec{S^2}}}^{H}. \end{aligned}$$
(77)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Tang, S. Clustering analysis for elastodynamic homogenization. Comput Mech 72, 725–741 (2023). https://doi.org/10.1007/s00466-023-02315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02315-w

Keywords

Navigation