Skip to main content
Log in

Parallel algorithm for particle-grid dual discretization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Particle-grid dual discretization methods employ one group of Lagrangian particles and one set of background grid, which demonstrate attractive properties because they inherit both the advantages of Lagrangian and Eulerian methods. An efficient parallel algorithm for particle-grid dual discretization methods is proposed in this paper. The feature that all physical quantities are carried by particles is considered, so the domain repartition and particle migration can be carried out easily on demand of dynamic load balancing. The background grid suitable for both regular and irregular domain decomposition is generated according to partition of particles, and the communication of grid nodal information is carefully designed. The material point method (MPM), the smoothed molecular dynamics (SMD) method and the concurrent multiscale method coupling molecular dynamics, SMD and MPM with this parallel algorithm are implemented in the large-scale atomic/molecular massively parallel simulator (LAMMPS) code. One weak scaling example and four strong scaling examples are computed to demonstrate nice parallel efficiency of the proposed parallel algorithm. The results also show that the irregular domain decomposition based on recursive coordinate bisection algorithm can achieve nice parallel efficiency for complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394

    Article  MATH  Google Scholar 

  2. Liu GR (2016) An overview on meshfree methods: for computational solid mechanics. Int J Comput Methods 13(5):1630001

    Article  MATH  Google Scholar 

  3. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MATH  Google Scholar 

  4. Shishova E, Spreng F, Hamann D, Eberhard P (2019) Tracking of material orientation in updated Lagrangian SPH. Comput Part Mech 6(3):449–460

    Article  Google Scholar 

  5. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  Google Scholar 

  6. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MATH  Google Scholar 

  7. McGlaun J, Thompson S, Elrick M (1990) CTH: a three-dimensional shock wave physics code. Int J Impact Eng 10(1–4):351–360

    Article  Google Scholar 

  8. Harlow F (1964) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:319–343

    Google Scholar 

  9. Brackbill J, Kothe D, Ruppel H (1988) Flip: a low-dissipation, particle-in-cell method for fluid flow. Comput Phys Commun 48(1):25–38

    Article  Google Scholar 

  10. Sulsky D, Chen Z, Schreyer H (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    Article  MATH  Google Scholar 

  11. Zhang X, Chen Z, Liu Y (2016) The material point method: a continuum-based particle method for extreme loading cases. Academic Press, Cambridge

    Google Scholar 

  12. Liu P, Liu Y, Zhang X (2015) Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact. Int J Impact Eng 77:120–133

    Article  Google Scholar 

  13. Ni R, Zhang X (2020) A precise critical time step formula for the explicit material point method. Int J Numer Methods Eng 121(22):4989–5016

    Article  Google Scholar 

  14. Gan Y, Lei C, Sun Z (2017) Material point method for simulating nonequilibrium thermal transport in metals irradiated by ultrafast lasers. J Opt Soc Am B 34(11):2334

    Article  Google Scholar 

  15. Gan Y, Sun Z, Chen Z, Zhang X, Liu Y (2018) Enhancement of the material point method using B-spline basis functions. Int J Numer Methods Eng 113(3):411–431

    Article  Google Scholar 

  16. Liu Y, Zhang X, Sze KY, Wang M (2007) Smoothed molecular dynamics for large step time integration. CMES Comput Model Eng Sci 20(3):177–191

    Google Scholar 

  17. He N, Liu Y, Zhang X (2017) Seamless coupling of molecular dynamics and material point method via smoothed molecular dynamics. Int J Numer Methods Eng 112(4):380–400

    Article  Google Scholar 

  18. Chen G, Wang H, Luo K, Fan J (2021) Flame edge structures and dynamics in planar turbulent non-premixed inclined slot-jet flames impinging at a wall. J Fluid Mech 920:A43

    Article  MATH  Google Scholar 

  19. Yao J, Yang Y, Hussain F (2021) Dynamics of a trefoil knotted vortex. J Fluid Mech 923:A19

    Article  MATH  Google Scholar 

  20. Liu Y, Chang Q, Yang Q, Wang C, Guan F (2011) Fracture analysis of rock mass based on 3-D nonlinear finite element method. Sci China Technol Sci 54(3):556–564

    Article  MATH  Google Scholar 

  21. Wen Z et al (2021) FEM analysis of the stress response and failure mechanism of SiC-coated Cf/SiC composites during thermal shock. Ceram Int 47(15):21996–22005

    Article  Google Scholar 

  22. Cheng Z, Zhou H, Lu Q, Gao H, Lu L (2018) Extra strengthening and work hardening in gradient nanotwinned metals. Science 362:6414

    Article  Google Scholar 

  23. Choi HY, Chae H, Kim ES (2021) Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics. Nucl Eng Technol 53(10):3264–3274

    Article  Google Scholar 

  24. Liu Y, Si X, Liu P, Zhang X (2018) Mesoscopic modeling and simulation of 3D orthogonal woven composites using material point method. Compos Struct 203(March):425–435

    Article  Google Scholar 

  25. Liu Y, Xu C (2019) Investigating the cold spraying process with the material point method. Int J Mech Mater Des 15(2):361–378

    Article  Google Scholar 

  26. Luitjens JP (2011) The scalability of parallel adaptive mesh refinement within UINTAH. Ph.D. thesis, The University of Utah, Salt Lake City

  27. Cintra DT, Willmersdorf RB, Lyra PRM, Lira WWM (2016) A parallel DEM approach with memory access optimization using HSFC. Eng Comput 33(8):2463–2488

    Article  Google Scholar 

  28. Li L, Wang Y, Ma Z, Tian R (2014) petaPar: A scalable petascale framework for meshfree/particle simulation. In: 12th IEEE international symposium on parallel and distributed processing with applications (ISPA). IEEE, pp 50–57

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  MATH  Google Scholar 

  30. Lian Y, Lin S, Yan W, Liu WK, Wagner GJ (2018) A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Comput Mech 61(5):543–558

    Article  MATH  Google Scholar 

  31. Yusa Y, Okada H, Yamada T, Yoshimura S (2018) Scalable parallel elastic-plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner. Comput Mech 62(6):1563–1581

    Article  MATH  Google Scholar 

  32. Hendrickson B, Devine K (2000) Dynamic load balancing in computational mechanics. Comput Methods Appl Mech Eng 184(2–4):485–500

    Article  MATH  Google Scholar 

  33. Zheng L, Jin X-L, Chen X-D (2007) The simulation of dual layer fuel tank during the impact with the ground based on parallel computing. J Comput Nonlinear Dyn 2(4):366–373

    Article  Google Scholar 

  34. Fleissner F, Eberhard P (2008) Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisection. Int J Numer Methods Eng 74(4):531–553

    Article  MATH  Google Scholar 

  35. Lukas T, Schiava D’Albano GG, Munjiza A (2014) Space decomposition based parallelization solutions for the combined finite-discrete element method in 2D. J Rock Mech Geotech Eng 6(6):607–615

    Article  Google Scholar 

  36. Schlittler TM, Cottereau R (2017) Fully scalable implementation of a volume coupling scheme for the modeling of multiscale materials. Comput Mech 60(5):827–844

    Article  MATH  Google Scholar 

  37. Lopes IA, Pires FM, Reis FJ (2018) A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains. Comput Mech 61(1–2):157–180

    Article  MATH  Google Scholar 

  38. Li X, Sulsky D (2000) A parallel material-point method with application to 3D solid mechanics. In: 6th international conference on applications of high-performance computing in engineering. Wessex Institute of Technology, pp 41–50

  39. Huang P, Zhang X, Ma S, Wang HK (2008) Shared memory OpenMP parallelization of explicit MPM and its application to hypervelocity impact. CMES Comput Model Eng Sci 38(2):119–147

    MATH  Google Scholar 

  40. Wang H, Zhang X, Liu Y (2008) Parallel smoothed molecular dynamics method and coupling with molecular dynamics. Chin J Comput Phys 25(6):718–724

    Google Scholar 

  41. Ruggirello KP, Schumacher SC (2014) A comparison of parallelization stratergies for the material point method. In: 11th World congress on computational mechanics. pp 2648–2656

  42. Dong Y, Wang D, Randolph MF (2015) A GPU parallel computing strategy for the material point method. Comput Geotech 66:31–38

    Article  Google Scholar 

  43. He N, Liu Y, Zhang X (2016) Molecular dynamics–smoothed molecular dynamics (MD–SMD) adaptive coupling method with seamless transition. Int J Numer Methods Eng 108(3):233–251

    Article  Google Scholar 

  44. Clark TW, Hanxleden RV, McCammon JA, Scott LR (1994) Parallelizing molecular dynamics using spatial decomposition. In: Proceedings of the scalable high-performance computing conference, pp 95–102

  45. Wang S, Zhao L, Liu Y (2021) An improved smoothed molecular dynamics method with high-order shape function. Int J Numer Methods Eng 122(13):3300–3322

  46. Zhang W, Lin J, Xu W, Fu H, Yang G (2017) Scstore: managing scientific computing packages for hybrid system with containers. Tsinghua Sci Technol 22(6):675–681

  47. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072172, 11772171) and Science Challenge Project (No. TZ2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, S. & Liu, Y. Parallel algorithm for particle-grid dual discretization. Comput Mech 71, 257–276 (2023). https://doi.org/10.1007/s00466-022-02237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02237-z

Keywords

Navigation