Setup
In the following sections, we wish to provide insights into the performance of the proposed TOP method. As a first step, we consider linear elastic material behavior, i.e., we investigate the effective stiffness. Secondly, we study cyclic stress-strain hystereses.
To create the morphology of the microstructures under investigation, we use the algorithm described in Kuhn et al. [20] to generate digital polycrystalline microstructures with prescribed volume fractions. For the morphology we consider two cases, a unique and log-normal grain size distribution (GSD). The former means that all grains have the same volume, i.e., \(V_g=\nicefrac {1}{G}\), where G denotes the total number of grains in the volume element. Restricting to a unique grain size permits us to study the influence of the individual grain orientations exclusively. Due to their frequent occurrence in experiments [69], we also investigate microstructures with an equivalent diameter following a log-normal grain size distribution with mean equal to unity and a standard deviation of 0.15, see Kuhn et al. [20].
Table 1 Parameters used for the crystal plasticity model [73, 74]
For a fixed morphology, we furnish the grains with orientations, where we investigate three different CODFs, namely a uniform, one with a slight texture and one with an increased texture. For the former, we compare the accuracy of TOP and the algorithm proposed by Quey et al. [18, 34], integrated into the polycrystal generation software Neper. In addition, we include a random orientation sampling (realized using the scipy implementation for sampling the Haar distribution [70]) as a benchmark. For the textured CODFs, we compare the TOP method to random sampling from discrete orientation measurements, which is a common practice [71, 72]. For the textured CODFs and a log-normal GSD, we additionally consider the Texture Discretization Technique (TDT) algorithm proposed by Melchior and Delannay [27], which, in a first step, samples orientations using the method proposed by Tóth and Van Houtte [26]. In a subsequent clustering step, a binary look-up table is computed by evaluating the misorientation of each pair of sampled orientations. If this misorientation is below a chosen threshold value, the corresponding entry in the look-up table is set to 1 otherwise to 0. To assign orientations to grains, each grain is associated with a number of so-called elementary volumes according to their size, which is used to find orientations in the look-up table with at least this number of orientations having low misorientation. The corresponding crystallographic grain orientation is then the average of orientations with low misorientation to each other. The parameters, i.e., the number of elementary volumes per grain and the threshold value for the misorientation, have to be chosen judiciously. The TOP method is implemented in Python with Cython extension following the optimization procedure outlined in Sec. 2.3. Unless otherwise specified, we use a tolerance of \(\text {tol}=10^{-{8}}\) to solve the optimization problem and consider texture coefficients up to rank six.
The material model described in Sec. 2.1 is implemented in a user-material-subroutine (UMAT). The coefficients of the elastic stiffness tensor are taken from the literature [73, 74], whereas the critical resolved shear stress, assumed to be identical for all slip systems, and the parameters of the kinematic hardening model were fitted to experimental stress-strain hystereses of the steel C45 using Bayesian optimization [51]. The complete set of used model parameters is summarized in Table 1.
To efficiently compute the effective stiffness as well as the macroscopic stress-strain hystereses, we use the FFT-based solver FeelMath [75,76,77]. For the stiffness computations we rely on the conjugate gradient method [78, 79], whereas for the non-linear problem we use a Newton-CG method [80, 81]. For both problems we use the Moulinec-Suquet discretization [82, 83]. For a perspective of solution schemes and discretizations, we refer to the recent review article by Schneider [84]. By default, we carry out the computations on periodic microstructures, discretized by \(64^3\) voxels. Please note that we apply periodic boundary conditions to compute the stiffness and hystereses.
Linear elastic stiffness
In this section, we study the effect of different orientation-sampling techniques on the effective stiffness of polycrystalline microstructures. In order to minimize the influence of the underlying microstructure morphology, we use a fixed grain microstructure for each realization and all orientation sampling methods. This is illustrated in Fig. 2, where we show the results of different sampling techniques for a fixed grain structure with grains of identical volume.
Uniform CODF
We start with the case of a unique grain-size and a uniform orientation distribution, corresponding to mechanically isotropic behavior [86,87,88]. For the results to be representative, it is necessary to determine the number of grains which ensure an isotropic effective material response, see for example Kanit et al. [15] and Yang et al. [17]. In this spirit, we investigate microstructures with an increasing number of grains and study their effective stiffness.
As discussed in Sec. 2.2, for a uniform CODF, all texture coefficients vanish, i.e.,
$$\begin{aligned} \bar{\mathbb {V}}'_{\langle \beta \rangle =} 0 \end{aligned}$$
(3.1)
holds for all considered texture coefficients. To quantify the anisotropy of the stiffness tensor we compare to the best approximation by an isotropic tensor (see Eq. (3.5)), i.e., we project the computed stiffness tensor onto the space of isotropic tensors of fourth order. For a detailed discussion see the work by Federov [89] and Arts [90]. We compute the mean stiffness
$$\begin{aligned} \overline{\mathbb {C}}_G = \frac{1}{N} \sum _{n=1}^{N} \mathbb {C}_{G,n} \end{aligned}$$
(3.2)
of \(N=10\) realizations and extract the Lamé constants via
$$\begin{aligned} \mu ^{\text {app}}&= \frac{1}{3} \left( \bar{C}_{G,44} + \bar{C}_{G,55} + \bar{C}_{G,66} \right) \end{aligned}$$
(3.3)
$$\begin{aligned} \lambda ^{\text {app}}&= \frac{1}{6} \left( \bar{C}_{G,12} + \bar{C}_{G,13} + \bar{C}_{G,23}\right. \nonumber \\&\left. \quad + \bar{C}_{G,21} + \bar{C}_{G,31} + \bar{C}_{G,32} \right) , \end{aligned}$$
(3.4)
where \(\bar{C}_{G, ij}\) denotes the ij-th entry of the stiffness tensor in Voigt notation [91].
Using the best isotropic approximation \(\mathbb {C}^\text {iso}\left( \mu ^{\text {app}}, \lambda ^{\text {app}}\right) \) based on the extracted Lamé constants, we introduce the isotropy error \(\delta ^\text {iso}\) via
$$\begin{aligned} \delta ^\text {iso}\left( \mathbb {C}_{G,1}, \ldots , \mathbb {C}_{G,N} \right) = \frac{\left\| \mathbb {C}^\text {iso}\left( \mu ^{\text {app}}, \lambda ^{\text {app}}\right) - \overline{\mathbb {C}}_G\right\| }{\left\| \overline{\mathbb {C}}_G\right\| }, \end{aligned}$$
(3.5)
measuring the degree of anisotropy present in the computed stiffness.
Table 2 Mean and \(95\%\) confidence intervals in GPa for the stiffness in Voigt’snotation computed by averaging ten realizations of microstructures with \(10\,000\) grains and uniformly distributed TOP orientations For an increasing number of grains \(G \in \{32,64,96,128,256,384,512,768,1024,1536\}\), we show the resulting isotropy error for the three different orientation sampling methods in Fig. 3(a). We observe a decreasing isotropy error for all methods with an increasing number of considered grains. All methods decrease the isotropy error at a similar rate. However, they differ in the initial error level. For instance, all sampling techniques reach a low isotropy error for 1536 grains, namely \(0.251\%\), \(0.041\%\) and \(0.027\%\) for random sampling, the Neper and TOP method, respectively. To reach a mean error below \(1\%\), the microstructure has to consist of more than 64 grains if the orientations are sampled randomly or generated by Neper. For all investigated grain counts, the TOP method produces the lowest isotropy error. Neper starts with a substantially higher error (by roughly one order of magnitude) at low grain counts and reaches a similar performance to TOP for more than 300 grains. For the naive random sampling, the isotropy error has a quite large offset to the more involved algorithms. In addition to evaluating the degree of isotropy, we investigate the deviation from the effective, infinite-volume stiffness. As our ground truth, we consider the mean of ten apparent stiffnesses, each computed using volume elements consisting of \(10\,000\) grains and discretized by \(128^3\) voxels (see Fig. 4a). The orientations are sampled using the TOP method. The mean stiffness and the \(95\%\) confidence intervals, computed via Student’s t-distribution [92], are given in Table 2. The isotropy error of the mean stiffness is \(\delta ^\text {iso}=0.012\%\). We define the total error \(\delta ^\text {tot}\) as the mean relative error between the stiffness of each realization and the one given in Table 2, i.e.,
$$\begin{aligned} \delta ^\text {tot} = \frac{1}{N} \sum _{n=1}^{N}\frac{\left\| \mathbb {C} - \mathbb {C}_{G,n}\right\| }{\left\| \mathbb {C}\right\| }. \end{aligned}$$
(3.6)
For the total error, shown in Fig. 3(b), we make similar observations as for the isotropy error. All of the methods decrease the total error at a similar rate, but differ initially. For the case of orientations generated by Neper, the error for 32 grains is \(\delta ^\text {tot}=1.17\%\) and therefore roughly twice as large compared to the TOP method with \(\delta ^\text {tot}=0.521\%\). To reach a similar error with randomly sampled orientations about 768 grains have to be considered. Random sampling leads to a mean error of \(0.677\%\) for 1536 grains. The errors produced by the Neper and TOP method are similar to each other with \(0.073\%\) and \(0.078\%\), respectively.
To understand the similar rates of error decrease more thoroughly, it is helpful to decompose the total error \(\delta ^\text {tot}\) into two contributions [15]. The first part is the random error and quantifies the inaccuracy associated with working on a reduced representation of the ground truth. The second contribution quantifies artificial long-range correlations introduced by working on periodic microstructures [15, 16]. We attribute the visible offset in Figs. 3 and 6 to the random error, as we use the same geometric representations for each orientation sampling method. Thus, a smaller random error is achieved by the TOP method and further reduction of the total error \(\delta ^\text {tot}\) is attributed to increasing the cell-size, i.e., increasing the number of grains.
Up to this point, our investigations were based on a polycrystal with a unique GSD, i.e., a unique grain size. However, to account for the influence of the grain size on the mechanical response, it may often be necessary, and therefore desirable, to match more realistic grain size distributions when generating synthetic polycrystalline microstructures. Thus, we turn to polycrystals with a log-normal GSD, as typically observed in real-world samples [69], with a mean equivalent diameter equal to unity and a standard deviation of 0.15. Figure 5 shows an example of a microstructure consisting of 128 grains, equipped with orientations from the three different sampling techniques. The isotropy as well as the total error for different sampling methods are shown in Fig. 6. For the log-normal GSD, we register a notable decrease in accuracy for the Neper sampling method compared to the unique grain size. Considering the case of 32 grains, the isotropy error and total error increase from \(1.22\%\) and \(1.17\%\) to \(1.62\%\) and \(2.19\%\), respectively. This loss of accuracy persists, even for larger grain counts, e.g., for 1536 grains the total error for the unique and log-normal GSD are \(0.07\%\) and \(0.37\%\), respectively. For randomly sampling the Haar distribution, the influence of a log-normal grain size distribution is smaller. For instance the biggest difference in the isotropy error is \(1.23\%\) and \(1.60\%\) for the unique and log-normal GSD and 32 grains, respectively. The proposed TOP method takes the volume fraction of each grain into account in an explicit way when optimizing the orientations. This results in strikingly similar error levels for both the unique and the log-normal case. Whereas the total error values realized by microstructures with 32 grains differ slightly for the unique and log-normal case, the resulting isotropy error is \(\delta ^\text {iso}=0.16\%\) for both GSDs. We investigate the influence of
Table 3 Mean and \(95\%\) confidence intervals in GPa for the stiffness in Voigt notation computed by averaging ten realizations of microstructures with 10 000 grains and TOP orientations for a synthetic CODF the maximum rank of the texture coefficients considered in our optimization scheme in the case of a uniform orientation distribution. For this purpose, we consider the case of ten microstructures consisting of 1024 grains, see Fig. 4(b) for an example of one realization. We study two different cases: Using solely the texture coefficient of rank four to optimize the orientations and considering the coefficients of rank four and six. For these two cases, the isotropy and total error are shown in Fig. 7 for different values of the tolerance \(\text {tol}\) used in the optimization procedure. Both errors show a decrease up to a value of \(\text {tol}=10^{-6}\), after which the resulting errors do not change. Interestingly, considering only the texture coefficient of rank 4 appears to be beneficial. As all total errors are below \(0.1\%\) and all isotropy errors even below \(0.03\%\), using texture coefficients of rank four and solving the problem up to a tolerance of \(\text {tol}=10^{-6}\) is sufficient for the case of a uniform orientation distribution when considering 1024 grains and solely the macroscopic stiffness is of interest.
Textured CODF
To further investigate the capabilities of the TOP method, we turn to a non-uniform CODF, i.e., a textured polycrystal. The prescribed CODF was generated by MTex [38], taken from the MTex documentation [93], see Fig. 8 for the corresponding pole figures. As MTex allows the sampling of CODFs, we draw \(50\,000\) samples at random for computing the texture coefficients, assuming the same weight for each sample.
As a ground truth we define the mean stiffness of ten realizations, each with \(10\,000\) grains. The resulting stiffness for TOP orientations is given, with its respective \(95\%\) confidence intervals, in Table 3. The isotropy error of this stiffness computes to \(\delta ^\text {iso}=5.54\%\), i.e., a slight anisotropy appears. For this texture, we investigate the approximation quality of the stiffness for a varying number of grains, each with identical volume. The total error for randomly sampling from the generated orientations and using texture coefficients is shown in Fig. 9(a). Randomly sampling the generated orientations gives a total error of \(\delta ^\text {tot}=4.47\%\) for 32 grains and reaches an error below \(1\%\) for 936 orientations. The mean total error achieved by the TOP method of \(\delta ^\text {tot} = 0.51\%\) for 32 grains actually lies below the error value achieved by randomly sampling 1536 orientations. For the latter number of grains, TOP achieves an error \(\delta ^\text {tot}=0.07\%\). This difference is attributed to the notable offset between the random sampling and TOP method, as both decrease \(\delta ^\text {tot}\) with the same rate.
Let us consider the case of a log-normal grain size distribution. For the TDT algorithm we assign eight elementary volumes to the smallest grain and increase the number of elementary volumes for each grain according to its size. We set the threshold misorientation value to \(5^{\circ }\). In Fig. 9(b), we provide the total error \(\delta ^\text {tot}\) for ten realizations with a varying number of grains. For the case of randomly sampling from given orientations, we observe a slight increase in the error value induced by the underlying log-normal grain size distribution. For instance, for a microstructures with 32 grains, the mean error is \(\delta ^\text {tot}=3.12\%\) and \(\delta ^\text {tot}=3.74\%\) for the unique and log-normal GSD, respectively. This effect decreases when a larger number of grains is considered, as the effect of a single, large grain with specific orientation on the overall response decreases. In contrast, the TOP method is not adversely affected. Indeed, during optimization, the volume fraction is explicitly taken into account when computing the texture coefficients, see equation (2.18). Using the TDT algorithm results in a lower total error than random sampling for all grain numbers considered. For instance, for a 64-grain microstructure, the total error is \(\delta ^\text {tot}=3.75\%\) and \(\delta ^\text {tot}=2.77\%\) for random sampling and the TDT, respectively. For both algorithms the error decreases with a similar rate as for the proposed TOP algorithm, whereas they both result in higher total errors than using TOP.
Table 4 Mean and \(95\%\) confidence intervals in GPa for the stiffness in Voigt notation computed by averaging ten realizations of microstructures with 10 000 grains and TOP orientations for the synthetic CODF with increased texture
Highly textured CODF
In practical applications, e.g., cold rolled steel, the intensities in the pole figure may reach values as high as ten. To investigate this scenario, we next consider a case with an increased texture in the CODF. We rely on synthetically generating a CODF using MTex [38] and show the resulting pole figures in Fig. 10.
For the ground truth we proceed in the same way as for the slightly textured CODF, using ten microstructures with \(10\,000\) grains of equal volume, equipped with orientations from the TOP method to compute the mean stiffness. For this case, the mean and the \(95\%\) confidence intervals are given in Table 4. The isotropy error is \(\delta ^\text {iso}=18.78\%\) which is more than three times the error of the slightly textured case, i.e., \(\delta ^\text {iso}=5.54\%\).
First, we investigate the case of a unique grain size distribution and show the resulting total error in Fig. 11(a). For TOP and random sampling, the error decreases with a similar rate, which is consistent with our observations in the slightly textured case. For TOP as well as for random sampling the total error is slightly lower than for the previously investigated CODF, e.g., for 32 grains the total error is \(\delta ^\text {tot}=3.62\%\) and \(\delta ^\text {tot}=0.40\%\) for random sampling and TOP, respectively. This holds for higher grain numbers as well. Indeed, for 1536-grain microstructures, randomly sampling orientation data leads to a total error of \(\delta ^\text {tot}=0.53\%\), whereas using orientations generated by TOP results in an error of \(\delta ^\text {tot}=0.06\%\). However, the relative difference between the total errors for the two CODFs is lower for random sampling than for TOP.
For the case of a log-normal GSD, compared to microstructures with grains of equal volume, the total error increases for both methods. For microstructures with 64 grains equipped with orientations randomly sampled from experimental data, the total error is \(\delta ^\text {tot}=2.82\%\) and \(\delta ^\text {tot}=3.11\%\) for a uniform and log-normal GSD, respectively. This observation holds for the TOP method as well, e.g., using 64 grains leads to an error increase from \(\delta ^\text {tot}=0.40\%\) for a unique GSD to \(\delta ^\text {tot}=0.45\%\) if the grain sizes follow a log-normal distribution. For the TDT algorithm and a grain count below 768, we set the number of elementary volumes for the smallest grain to eight. To account for the increased grain count, we increase the number of elementary volumes to twelve for 1024 and 1536 grains in the microstructure, whereas we retain the threshold of \(5^{\circ }\) for the misorientation computations. For our choice of parameters and grain numbers up to 256, we observe that the resulting error is close to random sampling. For instance, the total error obtained using a 256-grain microstructure is \(\delta ^\text {tot}=0.94\%\) and \(\delta ^\text {tot}=1.37\%\) for orientations from random sampling and the TDT algorithm, respectively. When increasing the grain count, there seems to be a limiting accuracy that the TDT algorithm can reach. Indeed, the total error does not decrease below \(1\%\). The source of this phenomenon needs to be investigated more thoroughly, and is beyond the scope of this work.
Cyclic stress-strain hystereses
We expand our investigation into the elasto-plastic regime, focusing on the effect of the orientation sampling method on the cyclic stress-strain hystereses of the material. As boundary condition, we use a macroscopic strain which follows a triangular path with an amplitude of \(\varepsilon _a=0.7\%\) and a cycle time of four seconds. To ensure a stabilized cyclic stress-strain hystereses, we compute two cycles in total and use the last one as our quantity of interest [74].
Because of the increased computational cost, we restrict the investigations to grain counts
$$\begin{aligned} G \in \{32,64,128,256,512,1024\} \end{aligned}$$
and use five realizations per number of grains, i.e., \(N=5\). We use the material parameters specified in Table 1.
Uniform CODF
For the uniformly distributed orientations, we asses the isotropy of the results. For this purpose, and a single realization, we compute three load cases to obtain the cyclic stress-strain hystereses in three different directions, i.e., XX-, YY- and ZZ-direction. For a perfectly isotropic response, the stress values would coincide for every considered direction. Thus, to measure the deviation from this isotropic result, we use the average stress values
$$\begin{aligned} \bar{\sigma }_s = \frac{1}{3}(\sigma _{XX,s} + \sigma _{YY,s} + \sigma _{ZZ,s}) \end{aligned}$$
(3.7)
of all directions at each time step s as our reference. Then, for each realization n, we compute the sum of the squared relative differences between the stresses in every direction and the mean of all directions weighted by the number of stress values S, i.e.,
$$\begin{aligned} \delta ^\text {hys,iso}_n = \sqrt{ \frac{1}{S}\sum _{s=1}^{S} \left( \frac{\sigma _{XX,s}}{\bar{\sigma }_s} - 1\right) ^2 + \left( \frac{\sigma _{YY,s}}{\bar{\sigma }_s} - 1\right) ^2 + \left( \frac{\sigma _{ZZ,s}}{\bar{\sigma }_s} - 1\right) ^2}. \end{aligned}$$
(3.8)
Eq. (3.8) measures the mean relative deviation in all directions from the mean stress value (3.7). The quantity \(\delta ^\text {hys,iso}\) extends the isotropy error defined for the stiffness, see equation (3.5), where the ideal isotropic case corresponds to the mean stress values in all directions. We compute the mean error of all realizations \(N=5\) by
$$\begin{aligned} \delta ^\text {hys,iso} = \frac{1}{N} \sum _{n=1}^N \delta ^\text {hys,iso}_n \end{aligned}$$
(3.9)
to get confidence in our results. We use the microstructures from Sec. 3.2 with orientations prescribed by Neper, TOP and random sampling.
For an increasing number of grains, we show the error \(\delta ^\text {hys,iso}\) in Fig. 12(a). Neper and TOP behave similar to each other, both lying below the error values achieved by random sampling. For example, the mean errors obtained from microstructures with 32 grains are \(\delta ^\text {hys,iso}=5.63\%\), \(\delta ^\text {hys,iso}=5.97\%\) and \(\delta ^\text {hys,iso}=1.10\%\) for random sampling, Neper and TOP, respectively. For an increasing number of grains in the microstructure and randomly sampled orientations, the error decreases more slowly than for the other methods. Also, random sampling results in the highest mean error value of \(\delta ^\text {hys,iso}=4.49\%\) for 1024 grains. We observe a steeper decrease in \(\delta ^\text {hys,iso}\) for an increasing number of grains for Neper and TOP, both lying close to each other. For example, microstructures with 64 grains produce an error of \(\delta ^\text {hys,iso}=1.19\%\) and \(\delta ^\text {hys,iso}=1.40\%\) for TOP and Neper orientations, respectively. For 1024 grains, the error levels are \(\delta ^\text {hys,iso}=0.27\%\) and \(\delta ^\text {hys,iso}=0.16\%\) for Neper and TOP orientations, respectively.
In Sect. 3.2, Fig. 7(a), we observed that taking a higher texture coefficient than rank four into account does not increase the degree of isotropy of the effective stiffness matrix significantly. Facing non-linear plastic behavior, we revisit the influence of higher order coefficients onto the macroscopic mechanical response. In Fig. 12(b), we show the isotropy error \(\delta ^\text {hys,iso}\) for different texture ranks and a varying number of grains. The curves show similar behavior for a small number of grains (up to about 256), with a comparable error of \(\delta ^\text {iso,hys}=1.69\%\) when considering solely rank four texture coefficients and \(\delta ^\text {iso,hys}=1.10\%\) when additionally optimizing rank six texture coefficients and using 32 grains. The difference becomes more pronounced for a larger number of grains, as the error obtained by optimizing the fourth rank coefficients is \(\delta ^\text {iso,hys}=0.36\%\), whereas accounting for the tensor of rank 6 reduces the error to \(\delta ^\text {iso,hys}=0.18\%\) for 512 grains. Following the procedure in Sec. 3.2, in addition to investigating the degree of isotropy, we would like to assess the ability to reproduce the effective mechanical response with a minimum number of grains. In the case of non-linear mechanical behavior, we define our ground truth as the stress-strain hystereses computed for five realizations of a microstructure with \(10\,000\) grains, discretized by \(128^3\) voxels. From these five realizations, we compute the mean stress-strain curve as
$$\begin{aligned} \hat{\sigma }_{r,s} = \frac{1}{N}\sum _{n=1}^{N} \sigma _{r,s,n}, \end{aligned}$$
(3.10)
where \(\sigma _{r,s,n}\) denotes the macroscopic stress value in direction r at a given time step s and N refers to the number of realizations, i.e., \(N=5\). For the considered loading directions, the resulting stress-strain hystereses are shown in Fig. 13. We observe that the individual curves lie on top of each other, i.e., there is no anisotropy present. For each number of grains G and each realization, we compute the root of the mean squared relative error in each direction as
$$\begin{aligned} \delta ^\text {hys,gt}_{n,r} = \sqrt{ \frac{1}{S} \sum _{s=1}^S \left( \frac{\sigma _{s,r,n}}{\hat{\sigma }_{s,r}} - 1\right) ^2}, \end{aligned}$$
(3.11)
where r refers to the loading direction, i.e., \(r \in \{XX,YY,ZZ\}\) in our case. Then, we compute the mean error over all considered directions
$$\begin{aligned} \delta ^\text {hys,gt} = \frac{1}{N} \sum _{n=1}^N \frac{1}{R} \sum _{r=1}^R \delta ^\text {hys,gt}_{n,r}, \end{aligned}$$
(3.12)
where R denotes the number of considered directions, i.e., \(R=3\) in this case. Comparing \(\delta ^\text {hys,gt}\) for different orientation sampling methods in Fig. 14, we observe similar trends as for the isotropy error \(\delta ^\text {hys,iso}\). For all methods, the error decreases with an increasing number of grains in the microstructure. For a small number of grains, the error resulting from TOP orientations is smallest with \(\delta ^\text {hys,gt}=1.80\%\) and \(\delta ^\text {hys,gt}=0.78\%\) for 32 and 256 grains, respectively. The error from using Neper orientations is higher, with \(\delta ^\text {hys,gt}=3.93\%\) and \(\delta ^\text {hys,gt}=0.82\%\). Randomly sampling the Haar distribution results in an error of \(9.00\%\) and \(2.15\%\) for the same number of grains. The error for all three methods and 1024 grains are \(0.43\%\), \(0.44\%\) and \(1.18\%\) for TOP, Neper and random orientations, respectively.
The error \(\delta ^\text {hys,gt}\) for taking only the texture coefficient of rank four into account, is shown in Fig. 14(b) together with the previously discussed results for considering texture coefficients with rank four and six. We observe that the error when accounting solely for rank four texture coefficients is higher than the error produced when considering higher ranks. The difference is less pronounced than for \(\delta ^\text {hys,iso}\). To extend our studies to a non-unique grain size distribution, we use microstructures with a log-normal grain size distribution. We fix the mean and standard deviation to \(\text {mean}=1\) and \(\text {stdev}=0.15\), respectively. To reduce the computational effort and because Neper and TOP provided the most promising results, we only consider orientations generated by Neper and TOP in the following.
Figure 15(a) shows \(\delta ^\text {hys,iso}\) for an increasing number of grains G. For every number of grains, the TOP methods provides a smaller error compared to Neper. For instance, using 32 grains, the error for TOP and Neper is \(\delta ^\text {hys,iso}=3.72\%\) and \(\delta ^\text {hys,iso}=12.02\%\), respectively. The influence of the underlying GSD manifests. Indeed, for both cases, the values are larger than for the unique grain size distribution.
Similar to the uniform GSD, the hystereses error closely follows the trend observed fo the isotropy error, see Fig. 15(b).
Textured CODF
For the case with mild anisotropy, we consider the synthetic CODF described in Sec. 3.2. We compute the stress-strain hystereses using five microstructures consisting of \(10\,000\) grains discretized by \(128^3\) voxels, see Fig. 4(a). In accordance with the case of a uniform orientation distribution, we use the mean stress values of these five realizations as our ground truth. The resulting stress-strain hystereses are shown in Fig. 16 for all three considered loading directions. We observe a slight anisotropy in YY-direction, whereas the stress-strain curves in XX- and ZZ-direction coincide. We show the total error to the mean stress values, i.e., Eq. (3.12), in Fig. 17(a) for the TOP method as well as for randomly sampling from given orientations.
Using random orientation sampling produces a larger error for all grain numbers considered. Especially for a small number of grains, the TOP method results in a visibly smaller error than for random sampling the experimental data. For 32 grains, the hysteresis total error \(\delta ^\text {hys, tot}\) is \(3.60\%\) and \(1.28\%\) for random sampling and TOP, respectively. For random sampling, the error reduces to \(0.76\%\) for 1024 grains, which is close to the value achieved by TOP, with \(\delta ^\text {hys,gt}=0.52\%\). We observe similar behavior for the case of a log-normal grain size distribution with \(\text {mean}=1\) and \(\text {stdev}=0.15\) in Fig. 17(b). The error for 32 grains increases for both kinds of orientation sampling methods, namely to \(3.84\%\) and \(1.41\%\) for random and TOP sampling, respectively. For both the unique and log-normal case, similar errors of \(0.85\%\) and \(0.44\%\) are achieved for randomly sampling experimental orientations and using 1024 grains. Interestingly, the error for a log-normal GSD is actually smaller than for the unique GSD. For instance using the TOP method and 512 grains, we observe an error of \(\delta ^\text {hys,gt}=0.66\%\) and \(\delta ^\text {hys,gt}=0.49\%\) for the unique and log-normal distributions, respectively.
For the TDT algorithm, we observe a lower error than for random sampling when an intermediate number of grains is considered, i.e., for grain counts of 64, 128 and 256. For instance, the error for a microstructure consisting of 64 grains equipped with orientations of the TDT algorithm is \(\delta ^\text {hys,gt}=2.23\%\) and \(\delta ^\text {hys,gt}=2.22\%\) for 128 grains. With 64 and 128 grains, the random sampling leads to an error of \(\delta ^\text {hys,gt}=3.84\%\) and \(\delta ^\text {hys,gt}=2.80\%\), respectively. For a larger number of grains, above 256, the error computed for the TDT algorithm exceeds the error of the randomly sampled orientations from given data. For 1024 grains, the error for random sampling is \(\delta ^\text {hys,gt}=0.85\%\) and \(\delta ^\text {hys,gt}=1.00\%\) for the TDT algorithm. All of the observed error values are above the errors obtained by TOP, e.g., using 32 grains, the error for the TOP method is \(\delta ^\text {hys,gt}=1.42\%\) whereas the TDT algorithm and random sampling lead to an error of \(\delta ^\text {hys,gt}=4.37\%\) and \(\delta ^\text {hys,gt}=3.84\%\), respectively.
Highly textured CODF
Last but not least, we consider the GSD outlined in Sec. 3.2 with an increased degree of anisotropy. Similar to the case of a slight anisotropy, we compute the stress-strain hystereses for five microstructures consisting of \(10\,000\) grains and a discretization of \(128^3\) voxels. As our ground truth we use the mean stress of these five realizations.
For microstructures with grains having a unique grain size distribution and orientations from TOP or randomly sampling experimental data, we show the total error in Fig. 18(a). We observe that, for all grain counts considered, using the TOP method results in lower error values compared to randomly sampling from given orientation data. For instance, using microstructures with 32 grains leads to a total error of \(\delta ^\text {hys,gt}=7.54\%\) and \(\delta ^\text {hys,gt}=17.44\%\) for TOP and random sampling, respectively. Thus, we observe an increase in the total error in comparison to the slightly textured CODF for both sampling methods and all microstructures. Indeed, for a 1024-grain microstructure equipped with orientations from TOP, the error increases from \(\delta ^\text {hys,gt}=1.42\%\) for the slightly textured case to \(\delta ^\text {hys,gt}=5.24\%\) for the case of higher texture. This observation holds for randomly selecting orientations from given orientation data, e.g., for a microstructure consisting of 256 grains the error for the highly textured CODF is \(\delta ^\text {hys,gt}=10.1\%\) whereas it is \(\delta ^\text {hys,gt}=1.82\%\) for the slightly textured case.
Figure 18(b) shows the total error for the case of a log-normal GSD equipped with orientations from TOP, TDT and random sampling. We make similar observations to the slightly textured CODF, i.e., an increase in the total error compared to the results for the unique GSD. For instance, a 64-grain microstructure with TOP orientations leads to an increase in the total error from \(\delta ^\text {hys,gt}=5.36\%\) for a unique GSD to \(\delta ^\text {hys,gt}=9.62\%\) for a log-normal GSD. Comparing the same microstructures equipped with orientations from randomly sampled orientation data, the error increases from \(\delta ^\text {hys,gt}=13.2\%\) to \(\delta ^\text {hys,gt}=16.3\%\) for a unique and a log-normal GSD, respectively. For lower grain counts, i.e., below 256, using the TDT algorithm results in similar error values as randomly sampling orientation data. An exception is the 32-grain microstructure, for which the total error value \(\delta ^\text {hys,gt}=11.7\%\) is close to the value obtained using TOP, i.e., \(\delta ^\text {hys,gt}=8.02\%\). For higher grain counts, i.e., above 256, the TDT algorithm does not decrease the total error but instead we observe an increase in the error values obtained, in line with observations made investigating the performance for the linear elastic properties in Sec. 3.