Skip to main content
Log in

A scaled boundary shell element formulation using Neumann expansion

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a new shell element formulation using the scaled boundary finite element (SBFE) method. A shell element is treated as a three-dimensional continuum. Its bottom surface is approximated with a quadrilateral spectral element and the shell geometry is represented through normal scaling of the bottom surface. Neumann expansion is applied to approximate the inversions of the matrix polynomials of the thickness coordinate ξ, including the Jacobian matrix and the coefficient of the second-order term in the SBFE equation. This permits the solution along the thickness to be expressed as a matrix exponential function whose exponent is a high-order matrix polynomial of ξ. After introducing the boundary conditions on the top and bottom surfaces and evaluating the resulting matrix exponential via Padé expansion, we derive the element stiffness and mass matrices. Poisson thickness locking is avoided fundamentally. Numerical examples demonstrate the applicability and efficiency of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419–451

    Article  Google Scholar 

  2. Belytschko T, Stolarski H, Liu WK, Carpenter N, Ong JSJ (1985) Stress projection for membrane and shear locking in shell finite elements. Comput Methods Appl Mech Eng 51:221–258

    Article  MathSciNet  MATH  Google Scholar 

  3. Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722

    Article  MATH  Google Scholar 

  4. Belytschko T, Wong BL, Stolarski H (1989) Assumed strain stabilization procedure for the 9-node Lagrange shell element. Int J Numer Methods Eng 28:385–414

    Article  MATH  Google Scholar 

  5. Bathe KJ, Iosilevich A, Chapelle D (2000) An evaluation of the MITC shell elements. Comput Struct 75:1–30

    Article  Google Scholar 

  6. Bletzinger KU, Bischoff M, Ramm E (2000) A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75:321–334

    Article  Google Scholar 

  7. Koschnick F, Bischoff M, Camprubí N, Bletzinger KU (2005) The discrete strain gap method and membrane locking. Comput Methods Appl Mech Eng 194:2444–2463

    Article  MATH  Google Scholar 

  8. Ko Y, Lee PS, Bathe KJ (2017) A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput Struct 192:34–49

    Article  Google Scholar 

  9. Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206

    Article  Google Scholar 

  10. Kiendl J, Marino E, De Lorenzis L (2017) Isogeometric collocation for the Reissner-Mindlin shell problem. Comput Methods Appl Mech Eng 325:645–665

    Article  MathSciNet  MATH  Google Scholar 

  11. Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449

    Article  MATH  Google Scholar 

  12. Kim DN, Bathe KJ (2008) A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput Struct 86:2027–2041

    Article  Google Scholar 

  13. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    Article  MathSciNet  MATH  Google Scholar 

  14. Payette GS, Reddy JN (2014) A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comput Methods Appl Mech Eng 278:664–704

    Article  MathSciNet  MATH  Google Scholar 

  15. Carrera E, Brischetto S, Cinefra M, Soave M (2011) Effects of thickness stretching in functionally graded plates and shells. Compos Part B: Eng 42:123–133

    Article  Google Scholar 

  16. Parisch H (1995) A continuum-based shell theory for non-linear applications. Int J Numer Methods Eng 38:1855–1883

    Article  MATH  Google Scholar 

  17. Hauptmann R, Schweizerhof K (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42:49–69

    Article  MATH  Google Scholar 

  18. Hauptmann R, Doll S, Harnau M, Schweizerhof K (2001) ’Solid-shell’ elements with linear and quadratic shape functions at large deformations with nearly incompressible materials. Comput Struct 79:1671–1685

    Article  Google Scholar 

  19. Li Q, Liu Y, Zhang Z, Zhong W (2015) A new reduced integration solid-shell element based on EAS and ANS with hourglass stabilization. Int J Numer Methods Eng 104:805–826

    Article  MathSciNet  MATH  Google Scholar 

  20. Mostafa M (2016) An improved solid-shell element based on ANS and EAS concepts. Int J Numer Methods Eng 108:1362–1380

    Article  MathSciNet  Google Scholar 

  21. Chapelle D, Ferent A, Bathe KJ (2004) 3D-shell elements and their underlying mathematical model. Math Models Methods Appl Sci 14:105–142

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen KD, Nguyen-Xuan H (2015) An isogeometric finite element approach for three-dimensional static and dynamic analysis of functionally graded material plate structures. Compos Struct 132:423–439

    Article  Google Scholar 

  23. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  24. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  MATH  Google Scholar 

  25. Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in the finite element analysis of plates. Nucl Eng Des 46:203–222

    Article  Google Scholar 

  26. Hughes TJR, Tezduyar TE (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48:587–596

    Article  MATH  Google Scholar 

  27. Fish J, Guttal R (1995) Recent advances in the p-version of the finite element method for shells. Comput Syst Eng 6:195–211

    Article  MATH  Google Scholar 

  28. Suri M (1996) Analytical and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133:347–371

    Article  MathSciNet  MATH  Google Scholar 

  29. Song C, Wolf JP (1997) The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput Methods Appl Mech Eng 147:329–355

    Article  MathSciNet  MATH  Google Scholar 

  30. Song C (2018) The scaled boundary finite element method: introduction to theory and implementation. Wiley

    Book  Google Scholar 

  31. Bazyar MH, Song C (2008) A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry. Int J Numer Methods Eng 74:209–237

    Article  MATH  Google Scholar 

  32. Prempramote S, Song C, Tin-Loi F, Lin G (2009) High-order doubly asymptotic open boundaries for scalar wave equation. Int J Numer Methods Eng 79:340–374

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu L, Zhang J, Song C, Birk C, Gao W (2019) An automatic approach for the acoustic analysis of three-dimensional bounded and unbounded domains by scaled boundary finite element method. Int J Mech Sci 151:563–581

    Article  Google Scholar 

  34. Song C, Wolf JP (2002) Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite element method. Comput Struct 80:183–197

    Article  Google Scholar 

  35. Yang ZJ, Deeks AJ (2007) Fully-automatic modelling of cohesive crack growth using a finite element–scaled boundary finite element coupled method. Eng Fract Mech 74:2547–2573

    Article  MATH  Google Scholar 

  36. Song C, Ooi ET, Natarajan S (2018) A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng Fract Mech 187:45–73

    Article  Google Scholar 

  37. Ooi ET, Song C, Tin-Loi F, Yang Z (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91:319–342

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu Y, Saputra AA, Wang J, Tin-Loi F, Song C (2017) Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models. Comput Methods Appl Mech Eng 313:106–132

    Article  MathSciNet  MATH  Google Scholar 

  39. Man H, Song C, Gao W, Tin-Loi F (2012) A unified 3D-based technique for plate bending analysis using scaled boundary finite element method. Int J Numer Methods Eng 91:491–515

    Article  MathSciNet  MATH  Google Scholar 

  40. Man H, Song C, Xiang T, Gao W, Tin-Loi F (2013) High-order plate bending analysis based on the scaled boundary finite element method. Int J Numer Methods Eng 95:331–360

    Article  MathSciNet  MATH  Google Scholar 

  41. Li J, Shi Z, Liu L (2019) A scaled boundary finite element method for static and dynamic analyses of cylindrical shells. Eng Anal Bound Elem 98:217–231

    Article  MathSciNet  MATH  Google Scholar 

  42. Wallner M, Birk C, Gravenkamp H (2020) A scaled boundary finite element approach for shell analysis. Comput Methods Appl Mech Eng 361:112807

    Article  MathSciNet  MATH  Google Scholar 

  43. Li J, Shi Z, Liu L, Song C (2020) An efficient scaled boundary finite element method for transient vibro-acoustic analysis of plates and shells. Comput Struct 231:106211

    Article  Google Scholar 

  44. Vu TH, Deeks AJ (2006) Use of higher-order shape functions in the scaled boundary finite element method. Int J Numer Methods Eng 65:1714–1733

    Article  MathSciNet  MATH  Google Scholar 

  45. Li J, Zhang Z, Liu L (2022) Quadrilateral scaled boundary spectral shell elements with assumed natural strains. Comput Struct 259:106697

    Article  Google Scholar 

  46. Yamazaki F, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. J Eng Mech 114:1335–1354

    Google Scholar 

  47. Yuan J, Allegri G, Scarpa F, Patsias S, Rajasekaran R (2016) A novel hybrid Neumann expansion method for stochastic analysis of mistuned bladed discs. Mech Syst Signal Process 72–73:241–253

    Article  Google Scholar 

  48. Niu Z (2021) Two-step structural damage detection method for shear frame structures using FRF and Neumann series expansion. Mech Syst Signal Process 149:107185

    Article  Google Scholar 

  49. Deeks AJ, Wolf JP (2002) A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech 28:489–504

    Article  MathSciNet  MATH  Google Scholar 

  50. Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1:3–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghuai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Eq. (62), \({\mathbf{E}}_{i}^{ - }\) (i = 0, 1, …, 6) are expressed as follows

$$ {\mathbf{E}}_{0}^{ - } = ({\mathbf{E}}_{0}^{0} )^{ - 1} $$
(93)
$$ {\mathbf{E}}_{1}^{ - } = {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } $$
(94)
$$ {\mathbf{E}}_{2}^{ - } = {\mathbf{E}}_{0}^{ - } \left( {{\mathbf{E}}_{2}^{0} - {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right){\mathbf{E}}_{0}^{ - } $$
(95)
$$ {\mathbf{E}}_{3}^{ - } {=} {\mathbf{E}}_{0}^{ - } \left[ {{\mathbf{E}}_{3}^{0} {-} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {+} {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) {+} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} {\mathbf{E}}_{1}^{0} } \right]{\mathbf{E}}_{0}^{ - } $$
(96)
$$ {\mathbf{E}}_{4}^{ - } = {\mathbf{E}}_{0}^{ - } \left( \begin{gathered} {\mathbf{E}}_{4}^{0} - \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left[ {\left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} + {\mathbf{E}}_{2}^{0} \left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} } \right] - \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{3} {\mathbf{E}}_{1}^{0} \hfill \\ \end{gathered} \right){\mathbf{E}}_{0}^{ - } $$
(97)
$$ {\mathbf{E}}_{5}^{ - } = {\mathbf{E}}_{0}^{ - } \left( \begin{gathered} {\mathbf{E}}_{5}^{0} - \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{4}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{4}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left( \begin{gathered} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} \hfill \\ + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} + {\mathbf{E}}_{3}^{0} \left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} \hfill \\ \end{gathered} \right) \hfill \\ - \left[ \begin{gathered} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)\left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} \hfill \\ \end{gathered} \right] \hfill \\ + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{4} {\mathbf{E}}_{1}^{0} \hfill \\ \end{gathered} \right){\mathbf{E}}_{0}^{ - } $$
(98)
$$ {\mathbf{E}}_{6}^{ - } = {\mathbf{E}}_{0}^{ - } \left( \begin{gathered} {\mathbf{E}}_{6}^{0} - \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{5}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{4}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{4}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{5}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left[ \begin{gathered} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} {\mathbf{E}}_{4}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{4}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} \hfill \\ + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} \hfill \\ + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} + {\mathbf{E}}_{4}^{0} \left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} \hfill \\ \end{gathered} \right] \hfill \\ - \left[ \begin{gathered} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right){\mathbf{E}}_{0}^{ - } \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) \hfill \\ + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{3}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{3}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)\left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} \hfill \\ \end{gathered} \right] \hfill \\ + \left[ \begin{gathered} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{3} \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right) + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{2} {\mathbf{E}}_{2}^{0} \left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{2} \hfill \\ + \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{2}^{0} + {\mathbf{E}}_{2}^{0} {\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)\left( {{\mathbf{E}}_{0}^{ - } {\mathbf{E}}_{1}^{0} } \right)^{3} \hfill \\ \end{gathered} \right] \hfill \\ - \left( {{\mathbf{E}}_{1}^{0} {\mathbf{E}}_{0}^{ - } } \right)^{5} {\mathbf{E}}_{1}^{0} \hfill \\ \end{gathered} \right)^{\vphantom{\dfrac{\sum_{n}^{18}}{18}}}{\mathbf{E}}_{0}^{ - } $$
(99)

In Eq. (63), \({\mathbf{Z}}_{i}^{jk}\) (j, k = 1, 2; i = 0, 1, …, 6) are expressed as follows

$$ {\mathbf{Z}}_{i}^{11} = {\mathbf{E}}_{0}^{ - } ({\mathbf{E}}_{i}^{1} )^{{\text{T}}} - \sum\limits_{s = 1}^{i} {\left[ {{\mathbf{E}}_{s}^{ - } ({\mathbf{E}}_{i - s}^{1} )^{{\text{T}}} } \right]} \, (i = 0,1,...,6) $$
(100)
$$ {\mathbf{Z}}_{i}^{12} = {\mathbf{E}}_{i}^{ - } \, (i = 0,1,...,6) $$
(101)
$$\begin{aligned} {\mathbf{Z}}_{i}^{21} &= \omega^{2} {\mathbf{M}}_{i}^{0} - {\mathbf{E}}_{i}^{2} + \sum\limits_{t = 0}^{i} \\&\quad\times{\left( {\left[ {{\mathbf{E}}_{t}^{1} {\mathbf{E}}_{0}^{ - } - \sum\limits_{s = 1}^{t} {\left( {{\mathbf{E}}_{t - s}^{1} {\mathbf{E}}_{s}^{ - } } \right)} } \right]({\mathbf{E}}_{i - t}^{1} )^{{\text{T}}} } \right)} \, (i = 0,1,2) \end{aligned}$$
(102)
$$ \begin{aligned}{\mathbf{Z}}_{i}^{21} &= - {\mathbf{E}}_{i}^{2} + \sum\limits_{t = 0}^{i} {\left( {\left[ {{\mathbf{E}}_{t}^{1} {\mathbf{E}}_{0}^{ - } - \sum\limits_{s = 1}^{t} }\right.}\right.}\\&\quad\times {\left.{\left.{{\left( {{\mathbf{E}}_{t - s}^{1} {\mathbf{E}}_{s}^{ - } } \right)} } \right]({\mathbf{E}}_{i - t}^{1} )^{{\text{T}}} } \right)} \, (i = 3,4,5,6) \end{aligned}$$
(103)
$$ {\mathbf{Z}}_{i}^{22} = - {\mathbf{E}}_{i}^{1} {\mathbf{E}}_{0}^{ - } + \sum\limits_{s = 1}^{i} {\left( {{\mathbf{E}}_{i - s}^{1} {\mathbf{E}}_{s}^{ - } } \right)} \, (i = 0,1,...,6) $$
(104)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. A scaled boundary shell element formulation using Neumann expansion. Comput Mech 70, 679–702 (2022). https://doi.org/10.1007/s00466-022-02184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02184-9

Keywords

Navigation