Skip to main content
Log in

Global-Local non intrusive analysis with robin parameters: application to plastic hardening behavior and crack propagation in 2D and 3D structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The global/local analysis allows to embed a specific local zone of interest with a different behaviour in a global coarse model. In this local model, fine meshes are usually used to model some structural details and potentially non-linear behaviours, such as plastic hardening and crack propagation. The standard global/local approach can be observed as a Dirichlet-Neumann iterative algorithm where a Dirichlet problem on the local model and a Neumann problem on the global one are solved successively. This paper proposes a new approach for the global/local framework as Robin parameters are considered on both local and global models to obtain more flexibility and improvement for convergence. Particularly, Robin parameters are obtained using a pre-defined strip of elements and the results are later improved by means of single-objective optimization, minimizing the number of iterations to achieve convergence. This improvement is illustrated for cracked domains and plastic hardening in 2D problems and 3D elements within a non-intrusive framework, allowing the usage of commercial finite element software along with open-source research finite element software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aldakheel F, Noii N, Wick T, Wriggers P (2021) A global-local approach for hydraulic phase-field fracture in poroelastic media. Comput Math Appl 91:99–121. https://doi.org/10.1016/j.camwa.2020.07.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Babu BV, Jehan MM (2003) Differential evolution for multi-objective optimization. In: 2003 Congress on Evolutionary Computation, CEC 2003 - Proceedings. 4 2696–2703. IEEE Computer Society. https://doi.org/10.1109/CEC.2003.1299429

  3. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8(2):239–287. https://doi.org/10.1007/s11047-008-9098-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanchard M, Allix O, Gosselet P, Desmeure G (2019) Space/time global/local noninvasive coupling strategy: Application to viscoplastic structures. Finite Elem Anal Des 156:1–12. https://doi.org/10.1016/j.finel.2019.01.003

    Article  Google Scholar 

  5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput Surv 35(3):268–308. https://doi.org/10.1145/937503.937505

    Article  Google Scholar 

  6. Bouclier R, Passieux JC, Salaün M (2016) Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture. Comput Methods Appl Mech Eng 300:1–26. https://doi.org/10.1016/j.cma.2015.11.007

    Article  MathSciNet  MATH  Google Scholar 

  7. Burnham CJ, English NJ (2019) Crystal Structure Prediction via Basin-Hopping Global Optimization Employing Tiny Periodic Simulation Cells, with Application to Water-Ice. J Chem Theory Comput 15(6):3889–3900. https://doi.org/10.1021/acs.jctc.9b00073

    Article  Google Scholar 

  8. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A Limited Memory Algorithm for Bound Constrained Optimization. SIAM J Sci Comput 16(5):1190–1208. https://doi.org/10.1137/0916069

    Article  MathSciNet  MATH  Google Scholar 

  9. Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-Newton matrices and their use in limited memory methods. Math Program 63(1–3):129–156. https://doi.org/10.1007/BF01582063

    Article  MathSciNet  MATH  Google Scholar 

  10. Das S, Suganthan PN (2011) Differential evolution: A survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31. https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  11. Duval M, Jc Passieux, Salaün M, Guinard S (2016) Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch Comput Meth Eng 23(1):17–38. https://doi.org/10.1007/s11831-014-9132-x

    Article  MathSciNet  MATH  Google Scholar 

  12. EDF: Code aster, analysis of structures and thermomechanics for studies and research (2019). www.code-aster.org

  13. Fuenzalida-Henriquez I, Hinojosa J, Peña L, Astudillo C (2021) Optimizing the search directions of a mixed DDM applied on cracks. Optimiz Eng. https://doi.org/10.1007/s11081-021-09653-9

    Article  Google Scholar 

  14. Gander MJ (2008) Schwarz methods over the course of time. Electr Transact Num Anal 31:228–255

    MathSciNet  MATH  Google Scholar 

  15. Gendre L, Allix O, Gosselet P (2011) A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int J Numer Meth Eng 87(9):889–905. https://doi.org/10.1002/nme.3142

    Article  MathSciNet  MATH  Google Scholar 

  16. Gendre L, Allix O, Gosselet P, Comte F (2009) Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44(2):233–245. https://doi.org/10.1007/s00466-009-0372-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerasimov T, Noii N, Allix O, De Lorenzis L (2018) A non-intrusive global/local approach applied to phase-field modeling of brittle fracture. Adv Model Simulat Eng Sci 5(1):1–30. https://doi.org/10.1186/s40323-018-0105-8

    Article  Google Scholar 

  18. Gosselet P, Blanchard M, Allix O, Guguin G (2018) Non-invasive global local coupling as a Schwarz domain decomposition method: acceleration and generalization. Adv Model Simulat Eng Sci. https://doi.org/10.1186/s40323-018-0097-4

    Article  Google Scholar 

  19. Guguin G, Allix O, Gosselet P, Guinard S (2016) On the computation of plate assemblies using realistic 3D joint model: a non-intrusive approach. Adv Model Simulat Eng Sci 3(1):1–23. https://doi.org/10.1186/s40323-016-0069-5

    Article  Google Scholar 

  20. Hinojosa J, Allix O, Guidault PA, Cresta P (2014) Domain decomposition methods with nonlinear localization for the buckling and post-buckling analyses of large structures. Adv Eng Softw 70:13–24. https://doi.org/10.1016/j.advengsoft.2013.12.010

    Article  Google Scholar 

  21. Kukkonen S, Lampinen J (2008) Generalized differential evolution for general non-linear optimization. In: COMPSTAT 2008 - Proceedings in Computational Statistics, 18th Symposium, 459–471. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-7908-2084-3_38

  22. Li K, Tian H (2019) Adaptive differential evolution with evolution memory for multiobjective optimization. IEEE Access 7:866–876. https://doi.org/10.1109/ACCESS.2018.2885947

    Article  Google Scholar 

  23. Liu YJ, Sun Q, Fan XL (2014) A non-intrusive global/local algorithm with non-matching interface: Derivation and numerical validation. Comput Methods Appl Mech Eng 277(August):81–103. https://doi.org/10.1016/j.cma.2014.04.012

    Article  Google Scholar 

  24. Locatelli M (2005) On the Multilevel Structure of Global Optimization Problems. Comput Optim Appl 30(1):5–22. https://doi.org/10.1007/s10589-005-4561-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Lorenzis LD (2020) Modeling in engineering using innovative numerical methods for solids and fluids, CISM International Centre for Mechanical Sciences, 599. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-37518-8

    Article  Google Scholar 

  26. Marinho YQ, Fruett F, Giesbrecht M (2021) Application of differential evolution to multi-objective tuning of vibration spectrum analyzers based on microelectromechanical systems. Eng Appl Artific Intell. https://doi.org/10.1016/j.engappai.2020.104071

    Article  Google Scholar 

  27. Negrello C, Gosselet P, Rey C (2018) A new impedance accounting for short- and long-range effects in mixed substructured formulations of nonlinear problems. Int J Numer Meth Eng 114(7):675–693. https://doi.org/10.1002/nme.5758

    Article  MathSciNet  Google Scholar 

  28. Noii N, Aldakheel F, Wick T, Wriggers P (2020) An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture. Comput Methods Appl Mech Eng 361:112744. https://doi.org/10.1016/J.CMA.2019.112744

    Article  MathSciNet  MATH  Google Scholar 

  29. Olson B, Hashmi I, Molloy K, Shehu A (2012) Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules. Adv Artificial Intellig 2012:1–19. https://doi.org/10.1155/2012/674832

    Article  Google Scholar 

  30. Oumaziz P, Gosselet P, Pa Boucard, Guinard S (2017) A non-invasive implementation of a mixed domain decomposition method for frictional contact problems. Comput Mechan 60(5):797–812. https://doi.org/10.1007/s00466-017-1444-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Oumaziz P, Gosselet P, Saavedra K, Tardieu N (2021) Analysis, improvement and limits of the multiscale Latin method. Comput Methods Appl Mech Eng 384:113955. https://doi.org/10.1016/J.CMA.2021.113955

    Article  MathSciNet  MATH  Google Scholar 

  32. Jc Passieux, Réthoré J, Gravouil A, Baietto MC (2013) Local / global non-intrusive crack propagation simulation using a multigrid X-FEM solver. Comput Mechan 52(6):1381–1393

    Article  Google Scholar 

  33. Roux FX (2008) Domain decomposition methodology with robin interface matching conditions for solving strongly coupled problems. 311–320. Springer Berlin Heidelberg

  34. Saavedra K, Allix O, Gosselet P, Hinojosa J, Viard A (2017) An enhanced nonlinear multi-scale strategy for the simulation of buckling and delamination on 3D composite plates. Comput Methods Appl Mech Eng 317:952–969. https://doi.org/10.1016/j.cma.2017.01.015

    Article  MathSciNet  MATH  Google Scholar 

  35. Schönborn SE, Goedecker S, Roy S, Oganov AR (2009) The performance of minima hopping and evolutionary algorithms for cluster structure prediction. J Chem Phys 130(14):144108. https://doi.org/10.1063/1.3097197

    Article  Google Scholar 

  36. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Meth 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  37. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116. https://doi.org/10.1021/jp970984n

    Article  Google Scholar 

  38. Whitcomb JD (1991) Iterative global/local finite element analysis. Comput Struct 40(4):1027–1031. https://doi.org/10.1016/0045-7949(91)90334-I

    Article  Google Scholar 

  39. Yasear S, Ku-Mahamud KR (2021) Review of the multi-objective swarm intelligence optimization algorithms. J Inform Commun Technol. 20(2), 171–211. https://doi.org/10.32890/jict2021.20.2.3

  40. Zhou C, Ieritano C, Hopkins WS (2019). Augmenting basin-hopping with techniques from unsupervised machine learning: applications in spectroscopy and ion mobility. https://doi.org/10.3389/fchem.2019.00519

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the international project ECOS-CONICYT C17E04 between LMT and Universidad de Talca, ANID/CONICYT grant number ECOS C17E04. In addition, this research was funded by ANID, grant number PFCHA / DOCTORADO BECAS CHILE / 2018 - 21181707 and BECA ESTUDIO DE DOCTORADO, UNIVERSIDAD DE TALCA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Hinojosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an extended version of our paper published in 14th World Congress on Computational Mechanics (WCCM). doi:10.23967/wccm-eccomas.2020.159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuenzalida-Henriquez, I., Oumaziz, P., Castillo-Ibarra, E. et al. Global-Local non intrusive analysis with robin parameters: application to plastic hardening behavior and crack propagation in 2D and 3D structures. Comput Mech 69, 965–978 (2022). https://doi.org/10.1007/s00466-021-02124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02124-z

Keywords

Navigation