Skip to main content
Log in

Variable-order approach to nonlocal elasticity: theoretical formulation, order identification via deep learning, and applications

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study presents the formulation of the variable-order continuum mechanics theory and its application to the analysis of nonlocal heterogeneous solids. The variable-order continuum theory enables a unique approach to model the response of solids exhibiting position-dependent nonlocal behavior. The formulation also guarantees frame-invariance provided that proper constraints on the functional definition of the variable-order are imposed. The study also presents a deep learning approach to identify the variable-order distribution describing the behavior of the medium. This methodology presents a very promising route for the practical application of the variable-order theory to real-world problems, especially when the microstructure is not known a priori and must be inferred from the physical response of the medium. The capabilities of the variable-order theory are illustrated by numerically simulating the static response of nonlocal beams having either a porous or a functionally graded core. The reduced-order variable fractional model shows excellent accuracy and significant computational efficiency when compared with a reference solution produced by a 3D finite element model that fully resolves the beam geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hollkamp JP, Sen M, Semperlotti F (2018) Model-order reduction of lumped parameter systems via fractional calculus. J Sound Vib 419:526–543

    Article  Google Scholar 

  2. Hollkamp JP, Semperlotti F (2020) Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J Sound Vib 465:115035

    Article  Google Scholar 

  3. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    Article  MATH  Google Scholar 

  4. Chatterjee A (2005) Statistical origins of fractional derivatives in viscoelasticity. J Sound Vib 284:1239–1245

    Article  Google Scholar 

  5. Benson DA, Schumer R, Meerschaert MM, Wheatcraft SW (2001) Fractional dispersion, Lévy motion, and the made tracer tests. Transp Porous Media 42:211–240

    Article  MathSciNet  Google Scholar 

  6. Chen W, Holm S (2004) Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J Acoust Soc Am 115:1424–1430

    Article  Google Scholar 

  7. Holm S, Sinkus R (2010) A unifying fractional wave equation for compressional and shear waves. J Acoust Soc Am 127:542–548

    Article  Google Scholar 

  8. Buonocore S, Sen M, Semperlotti F (2019) Occurrence of anomalous diffusion and non-local response in highly-scattering acoustic periodic media. New J Phys 21:033011

    Article  Google Scholar 

  9. Buonocore S, Sen M (2020) Scattering cross sections of acoustic nonlocal inclusions: A fractional dynamic approach. J Appl Phys 127:203101

    Article  Google Scholar 

  10. Patnaik S, Semperlotti F (2020) A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc R Soc A 476:20200200

    Article  MathSciNet  MATH  Google Scholar 

  11. Patnaik S, Sidhardh S, Semperlotti F (2021) Displacement-driven approach to nonlocal elasticity. arXiv preprint arXiv:2104.05818

  12. Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417

    Article  Google Scholar 

  13. Lazopoulos KA (2006) Non-local continuum mechanics and fractional calculus. Mech Res Commun 33:753–757

    Article  MathSciNet  MATH  Google Scholar 

  14. Carpinteri A, Cornetti P, Sapora A (2014) Nonlocal elasticity: an approach based on fractional calculus. Meccanica 49:2551–2569

    Article  MathSciNet  MATH  Google Scholar 

  15. Sumelka W, Blaszczyk T (2014) Fractional continua for linear elasticity. Archives Mech 66:147–172

    MathSciNet  MATH  Google Scholar 

  16. Alotta G, Failla G, Zingales M (2017) Finite-element formulation of a nonlocal hereditary fractional-order timoshenko beam. J Eng Mech 143:D4015001

    Google Scholar 

  17. Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler-Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech-A/Solids 54:243–251

    Article  MathSciNet  MATH  Google Scholar 

  18. Rahimi Z, Rezazadeh G, Sumelka W (2019) A non-local fractional stress-strain gradient theory. Int J Mech Mater Des 16:265–278

    Article  Google Scholar 

  19. Failla G, Santini A, Zingales M (2013) A non-local two-dimensional foundation model. Arch Appl Mech 83:253–272

    Article  MATH  Google Scholar 

  20. Hollkamp JP, Sen M, Semperlotti F (2019) Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J Sound Vib 441:204–220

    Article  Google Scholar 

  21. Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives. Proc R Soc A 378:20200050

    Google Scholar 

  22. Challamel N et al (2014) On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Archive Appl Mech 84:1275–1292

  23. Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Article  Google Scholar 

  24. Patnaik S, Sidhardh S, Semperlotti F (2021) Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int J Mech Sci 189:105992

    Article  MATH  Google Scholar 

  25. Glöckle WG, Nonnenmacher TF (1995) A fractional calculus approach to self-similar protein dynamics. Biophys J 68:46–53

    Article  Google Scholar 

  26. Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64:163–171

    Article  MathSciNet  MATH  Google Scholar 

  27. Meng R, Yin D, Drapaca CS (2019) A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int J Non-Linear Mech 113:171–177

    Article  MATH  Google Scholar 

  28. Di Paola M, Alotta G, Burlon A, Failla G (2020) A novel approach to nonlinear variable-order fractional viscoelasticity. Phil Trans R Soc A 378:20190296

    Article  MathSciNet  MATH  Google Scholar 

  29. Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integ Trans Spec Funct 1:277–300

    Article  MathSciNet  MATH  Google Scholar 

  30. Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Nonlinear Dyn 29:57–98

    Article  MathSciNet  MATH  Google Scholar 

  31. Coimbra C (2003) Mechanics with variable-order differential operators. Ann Phys 12:692–703

    Article  MathSciNet  MATH  Google Scholar 

  32. Patnaik S, Semperlotti F (2020) Application of variable-and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn 100:561–580

    Article  MATH  Google Scholar 

  33. Patnaik S, Semperlotti F (2020) Modeling contacts and hysteretic behavior in discrete systems via variable-order fractional operators. J Comput Nonlinear Dyn 15

  34. Solís-Pérez J, Gómez-Aguilar J (2020) Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions. Eng Comput 1–23

  35. Chechkin AV, Gorenflo R, Sokolov IM (2005) Fractional diffusion in inhomogeneous media. J Phys A: Math Gen 38:L679

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun H, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388:4586–4592

    Article  Google Scholar 

  37. Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc R Soc A 476:20190498

    Article  MathSciNet  MATH  Google Scholar 

  38. Patnaik S, Semperlotti F (2020) Variable-order particle dynamics: formulation and application to the simulation of edge dislocations. Phil Trans R Soc A 378:20190290

    Article  MathSciNet  MATH  Google Scholar 

  39. Patnaik S, Semperlotti F (2021) Variable-order fracture mechanics and its application to dynamic fracture. npj Comput Mater 7:1–8

    Article  Google Scholar 

  40. Wu F, Liu JF, Wang J (2015) An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ Earth Sci 73:6965–6971

    Article  Google Scholar 

  41. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45:2673–2681

    Article  Google Scholar 

  42. Antil H, Otárola E, Salgado AJ (2018) Optimization with respect to order in a fractional diffusion model: analysis, approximation and algorithmic aspects. J Sci Comput 77:204–224

    Article  MathSciNet  MATH  Google Scholar 

  43. D’Elia M, Gunzburger M (2016) Identification of the diffusion parameter in nonlocal steady diffusion problems. Appl Math Optim 73:227–249

  44. Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S (2017) Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078

  45. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  46. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  47. Mehta PP, Pang G, Song F, Karniadakis GE (2019) Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network. Fract Calculus Appl Anal 22:1675–1688

    Article  MathSciNet  MATH  Google Scholar 

  48. Pang G, D’Elia M, Parks M, Karniadakis GE (2020) nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. algorithms and applications. J Comput Phys 422:109760

  49. Batra R (2021) Misuse of Eringen’s nonlocal elasticity theory for functionally graded materials. Int J Eng Sci 159:103425

  50. Li Z, Wang H, Xiao R, Yang S (2017) A variable-order fractional differential equation model of shape memory polymers. Chaos Solitons Fractals 102:473–485

    Article  MathSciNet  Google Scholar 

  51. Sun H, Chen W, Wei H, Chen Y (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185

    Article  Google Scholar 

  52. Szajek K, Sumelka W (2019) Discrete mass-spring structure identification in nonlocal continuum space-fractional model. Eur Phys J Plus 134:1–19

    Article  Google Scholar 

  53. Zhu H, Patnaik S, Walsh TF, Jared BH, Semperlotti F (2020) Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc Natl Acad Sci 117:26099–26108

    Article  Google Scholar 

  54. Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38:7359–7380

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang CY, Murmu T, Adhikari S (2011) Mechanisms of nonlocal effect on the vibration of nanoplates. Appl Phys Lett 98:153101

    Article  Google Scholar 

  56. Capecchi D, Ruta G, Trovalusci P (2011) Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Archive Appl Mech 81:1573–1584

  57. Nair S (2019) Nonlocal Acoustic Black Hole Metastructures: Achieving Ultralow Frequency and Broadband Vibration Attenuation. Ph.D. thesis, Purdue University Graduate School

  58. Sainath TN, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4580–4584 (IEEE, 2015)

  59. Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: continual prediction with LSTM. In: IET conference proceedings, pp 850–855(5)

  60. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249–256 (JMLR Workshop and Conference Proceedings, 2010)

  61. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  62. Hossain MS, Ong ZC, Ismail Z, Noroozi S, Khoo SY (2017) Artificial neural networks for vibration based inverse parametric identifications: a review. Appl Soft Comput 52:203–219

  63. Yan L, Zhou T (2019) An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems. arXiv preprint arXiv:1911.08926

  64. Padmanabha GA, Zabaras N (2021) Solving inverse problems using conditional invertible neural networks. J Comput Phys 433:110194

    Article  MathSciNet  Google Scholar 

  65. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM siggraph Comput Graph 21:163–169

    Article  Google Scholar 

  66. Szilvśi-Nagy M, Matyasi G (2003) Analysis of STL files. Math Comput Model 38:945–960

    Article  MathSciNet  MATH  Google Scholar 

  67. Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61

    Article  Google Scholar 

  68. Anirudh B, Ganapathi M, Anant C, Polit O (2019) A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Compos Struct 222:110899

    Article  Google Scholar 

  69. Trovalusci P, De Bellis ML, Masiani R (2017) A multiscale description of particle composites: From lattice microstructures to micropolar continua. Compos B Eng 128:164–173

    Article  Google Scholar 

  70. Devarajan B, Kapania RK (2020) Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis. Compos Struct 238:111881

    Article  Google Scholar 

  71. Devarajan B (2021) Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method. arXiv preprint arXiv:2104.05132

  72. Ortigueira MD, Valério D, Machado JT (2019) Variable order fractional systems. Commun Nonlinear Sci Numer Simul 71:231–243

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Science Foundation (NSF) under Grants MOMS #1761423 and CAREER #1621909, and the Defense Advanced Research Project Agency (DARPA) under Grant #D19AP00052. The content and information presented in this manuscript do not necessarily reflect the position or the policy of the government. The material is approved for public release; distribution is unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Semperlotti.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A: Definitions of variable-order fractional derivatives

Variable-order fractional operators were first conceptualized by Samko et al.  [29] in 1993 as a natural extension of CO fractional operators. Over time, researchers have presented several definitions of VO fractional derivatives. The most significant discriminant factor, between the different definitions, consisted in the memory behavior of the operator. A detailed review of the different definitions, properties, and their applications can be found in [37, 72]. Here below, we report the definitions of the type-I and type-II VO Caputo operators that have been used in this work.

Type-I: If f(x) and \(\alpha (x)\) are continuous real-valued functions on (ab), the left- and right-handed VO Caputo derivative to the order \(\alpha (x)>0\) with no order-memory are defined as:

$$\begin{aligned}&\text {Left-handed derivative:}~ {}^C_a D^{\alpha (x)}_x f(x) \nonumber \\&\quad = \frac{1}{\Gamma (n-\alpha (x))} \int _{a}^{x} \frac{ D^n_{x^\prime } f(x^\prime )}{(x - x^\prime )^{1+\alpha (x)-n}} \mathrm {d}x^\prime \end{aligned}$$
(30a)
$$\begin{aligned}&\text {Right-handed derivative:}~ {}^C_x D^{\alpha (x)}_b f(x) \nonumber \\&= \frac{(-1)^n}{\Gamma (n-\alpha (x))} \int _{x}^{b} \frac{ D^n_{x^\prime } f(x^\prime )}{(x^\prime - x)^{1+\alpha (x)-n}} \mathrm {d}x^\prime \end{aligned}$$
(30b)

where \(n=\lceil {\alpha (x)}\rceil \) is the upper integer bound on \(\alpha (x)\) at the spatial location x, \(\Gamma (\cdot )\) is the Gamma function, and \(x^\prime \) is a dummy spatial variable of integration. As discussed in Sect. 2\(\alpha (x)\in (0,1)\) throughout this work. Under this latter condition, the expressions in Eq. (30) can be simplified as:

$$\begin{aligned}&\text {Left-handed derivative:}~ {}^C_a D^{\alpha (x)}_x f(x) \nonumber \\&\quad = \frac{1}{\Gamma (1-\alpha (x))} \int _{a}^{x} \frac{ D^1_{x^\prime } f(x^\prime )}{(x - x^\prime )^{\alpha (x)}} \mathrm {d}x^\prime \end{aligned}$$
(31a)
$$\begin{aligned}&\text {Right-handed derivative:}~ {}^C_x D^{\alpha (x)}_b f(x) \nonumber \\&\quad = \frac{-1}{\Gamma (1-\alpha (x))} \int _{x}^{b} \frac{ D^1_{x^\prime } f(x^\prime )}{(x^\prime - x)^{\alpha (x)}} \mathrm {d}x^\prime \end{aligned}$$
(31b)

Analogous expressions can be obtained for the Type-II and Type-III operators presented in the following when \(\alpha (x)\in (0,1)\). We do not provide them here for the sake of brevity.

Type-II: If f(x) and \(\alpha (x)\) are continuous real-valued functions on (ab), the left- and right-handed VO Caputo derivative to the order \(\alpha (x)>0\) with weak order-memory are defined as:

$$\begin{aligned}&\text {Left-handed derivative:}~ {}^C_a D^{\alpha (x^\prime )}_x f(x)\nonumber \\&\quad = \int _{a}^{x} \frac{1}{\Gamma (n-\alpha (x^\prime ))} \left[ \frac{D^n_{x^\prime } f(x^\prime )}{(x - x^\prime )^{1+\alpha (x^\prime )-n}} \right] \mathrm {d}x^\prime \end{aligned}$$
(32a)
$$\begin{aligned}&\text {Right-handed derivative:}~ {}^C_x D^{\alpha (x^\prime )}_b f(x) \nonumber \\&\quad = \int _{x}^{b} \frac{(-1)^n}{\Gamma (n-\alpha (x^\prime ))} \left[ \frac{ D^n_{x^\prime } f(x^\prime )}{(x^\prime - x)^{1+\alpha (x^\prime )-n}} \right] \mathrm {d}x^\prime \end{aligned}$$
(32b)

Type-III: If f(x) and \(\alpha (x)\) are continuous real-valued functions on (ab), the left- and right-handed VO Caputo derivative to the order \(\alpha (x)>0\) with weak order-memory are defined as:

$$\begin{aligned}&\text {Left-handed derivative:}~ {}^C_a D^{\alpha (x-x^\prime )}_x f(x)\nonumber \\&\quad = \int _{a}^{x} \frac{1}{\Gamma (n-\alpha (x-x^\prime ))} \left[ \frac{D^n_{x^\prime } f(x^\prime )}{(x - x^\prime )^{1+\alpha (x-x^\prime )-n}} \right] \mathrm {d}x^\prime \nonumber \\ \end{aligned}$$
(33a)
$$\begin{aligned}&\text {Right-handed derivative:}~ {}^C_x D^{\alpha (x-x^\prime )}_b f(x)\nonumber \\&\quad = \int _{x}^{b} \frac{(-1)^n}{\Gamma (n-\alpha (x-x^\prime ))} \left[ \frac{ D^n_{x^\prime } f(x^\prime )}{(x^\prime - x)^{1+\alpha (x-x^\prime )-n}} \right] \mathrm {d}x^\prime \nonumber \\ \end{aligned}$$
(33b)

Note the differences within the definitions of the different VO derivatives. While the strength of the power-law kernel, that is the exponent of the denominator, is fixed for the point x for the type-I derivative, the strength of the type-II kernel is a function of the dummy variable \(x^\prime \) and the strength of the type-III kernel a function of the relative separation between x and \(x^\prime \). This is exactly the reason which leads to difference in the memory characteristics of the different definitions. Detailed discussions on the properties of these derivatives, including linearity, time invariance, memory characteristics (both operator- and order-memory), Laplace transforms, and physical realization using switches can be found in [30].

1.2 B: Frame-invariance of the VO continuum model - Type-I v/s Type-II v/s Type-III operators

In the following, we will analyze the frame-invariance of the variable-order continuum formulation resulting from the use of either type-I or type-II or type-III VO Caputo derivatives. Consider a rigid-body motion superimposed on a general point \(\varvec{X}\) (see Fig. 1a) of the reference configuration of the body as:

$$\begin{aligned} \varvec{\Psi }(\varvec{X},t)=\mathbf{c} (t)+\mathbf{Q} (t)\varvec{X}, \end{aligned}$$
(34)

where \(\mathbf{Q} (t)\) is a proper orthogonal tensor denoting a rotation and \(\mathbf{c} (t)\) is a spatially constant term representing a translation. Under this rigid-body motion, the fractional deformation gradient tensor denoted as \(\tilde{\mathbf{F }}^{\Psi }_X\) should be an orthogonal tensor such that \(\tilde{\mathbf{F }}^{\Psi T}_X\tilde{\mathbf{F }}^{\Psi }_X = \mathbf{I} \). More specifically, the fractional deformation gradient tensor should transform as \(\tilde{\mathbf{F }}^{\Psi }_X = \mathbf{Q} \) (similar to the classical continuum case where \(\mathbf{F} ^{\Psi } = \mathbf{Q} \)) such that the strain measures are null. As discussed in detail in [10], the fractional deformation gradient tensor \(\tilde{\mathbf{F }}^{\Psi }_X\) is defined as the fractional-order derivative of the motion \(\Psi \) with respect to the reference coordinates, that is, \(\tilde{\mathbf{F }}^{\Psi }_X = D^{\alpha (\varvec{X},\varvec{X}^\prime )}_{\varvec{X}} \varvec{\Psi }\).

Type-I derivative: Consider the formulation involving type-I VO derivatives. Recalling the definition of the type-I VO-RC derivative from Eqs. (2,30) it follows that:

$$\begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }= & {} \frac{1}{2} \Gamma (2-\alpha (\varvec{X})) \left[ \frac{L_{-_{j}}^{\alpha (\varvec{X})-1}}{\Gamma (1-\alpha (\varvec{X}))} \int _{X_{-_{j}}}^{X_j} \frac{D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)}{(X_j-{X}^\prime _j)^{\alpha (\varvec{X})}} \mathrm {d}{X}^\prime _j \right. \nonumber \\&\left. + \frac{L_{+_{j}}^{\alpha (\varvec{X})-1}}{\Gamma (1-\alpha (\varvec{X}))} \int _{X_{j}}^{X_{+_j}} \frac{D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)}{({X}^\prime _j-X_j)^{\alpha (\varvec{X})}} \mathrm {d}{X}^\prime _j \right] \end{aligned}$$
(35)

where \(\varvec{X}^\prime \) is the dummy vector representing the spatial variable, and \(L_{-_j}\) and \(L_{+_j}\) are the length scales corresponding to the horizon of nonlocality in the reference configuration. \(D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)\) simplifies as:

$$\begin{aligned} D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t) = \frac{\mathrm {d} \Psi _{i} (\varvec{X}^\prime ,t) }{\mathrm {d}{X}^\prime _j} = \frac{\mathrm {d}}{\mathrm {d}{X}^\prime _j}(c_i + Q_{ik}{X}^\prime _{k}) \end{aligned}$$
(36)

Noting that \(\frac{\mathrm {d}c_i(t)}{\mathrm {d}{X}^\prime _j}=0\) and \(\mathbf{Q} =\mathbf{Q} (t)\) it follows that:

$$\begin{aligned} D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)=Q_{ik}{X}^\prime _{k,j}=Q_{ik}\delta _{kj}=Q_{ij} \end{aligned}$$
(37)

Thus, under the rigid body motion \(\varvec{\Psi }\):

$$\begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }= & {} \frac{1}{2} \Gamma (2-\alpha (\varvec{X})) Q_{ij} \left[ \frac{L_{-_{j}}^{\alpha (\varvec{X})-1}}{\Gamma (1-\alpha (\varvec{X}))}\right. \nonumber \\&\int _{X_{-_{j}}}^{X_j} \frac{ 1 }{(X_j-{X}^\prime _j)^{\alpha (\varvec{X})}} \mathrm {d}{X}^\prime _j \nonumber \\&\left. + \frac{L_{+_{j}}^{\alpha (\varvec{X})-1}}{\Gamma (1-\alpha (\varvec{X}))} \int _{X_{j}}^{X_{+_j}} \frac{ 1 }{({X}^\prime _j-X_j)^{\alpha (\varvec{X})}} \mathrm {d}{X}^\prime _j \right] \end{aligned}$$
(38)

Since the exponent of the power-law kernel \(\alpha (\varvec{X})\) is independent of the integrating variable \(\varvec{X}^\prime \), the above expression can be easily simplified (by treating \(\varvec{X}\) as a constant within the integration) as:

$$\begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }= & {} \frac{1}{2} \left[ L_{-_{j}}^{\alpha (\varvec{X})-1} (X_j-X_{-_{j}})^{1-\alpha (\varvec{X})}\right. \nonumber \\&\left. + L_{+_{j}}^{\alpha (\varvec{X})-1} (X_{+_{j}}-X_j)^{1-\alpha (\varvec{X})} \right] Q_{ij} \end{aligned}$$
(39)

In the above simplifications we have used the following property of the \(\Gamma (\cdot )\) function: \(\Gamma (2-\alpha ) = (1-\alpha )\Gamma (1-\alpha )\). As highlighted in §2, the length scales \(L_{-_j}\) and \(L_{+_j}\) are taken such that: \(L_{-_{j}}=X_j-X_{-_{j}}\) and \(L_{+_{j}}=X_{+_{j}}-X_j\). This has also been illustrated schematically in Fig. 1b. By substituting these relations in Eq. (39), it follows that \(\tilde{\mathbf{F }}^{\Psi }_X = \mathbf{Q} \) at all times. We also emphasize that the nonlocal formulation allows for an exact treatment of frame invariance in the presence of asymmetric horizons which occur at points close to material boundaries and interfaces. The different horizon lengths \(L_{-_j}\) and \(L_{+_j}\) enables the truncation of the horizon at points close to or on the boundary in order to exactly satisfy frame-invariance.

Type-II derivative: We consider a general formulation involving the left- and right-handed type-II VO Caputo derivatives. More specifically, we replace the length scale factors introduced in Eq. (2) with general multiplying factors \(c_1\) and \(c_2\), and then find expressions for \(c_1\) and \(c_2\) such that the resulting formulation is frame-invariant. Using the definition of the type-II VO Caputo derivatives from Eq. (32) it follows that:

$$\begin{aligned} \begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }&= c_1 \int _{X_{-_{j}}}^{X_j} \frac{1}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \left[ \frac{D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)}{(X_j-{X}^\prime _j)^{\alpha (\varvec{X}^\prime )}} \right] \mathrm {d}{X}^\prime _j \\&\quad + c_2 \int _{X_{j}}^{X_{+_j}} \frac{1}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \left[ \frac{D^1_{{X}^\prime _j} \Psi _{i}(\varvec{X}^\prime ,t)}{({X}^\prime _j-X_j)^{\alpha (\varvec{X}^\prime )}} \right] \mathrm {d}{X}^\prime _j \end{aligned}\nonumber \\ \end{aligned}$$
(40)

Retracing the steps in Eqs. (36,37), under the rigid body motion \(\varvec{\Psi }\), we obtain:

$$\begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }= & {} Q_{ij} \left[ c_1 \int _{X_{-_{j}}}^{X_j} \frac{(X_j-{X}^\prime _j)^{-\alpha (\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j \right. \nonumber \\&\left. + c_2 \int _{X_{j}}^{X_{+_j}} \frac{({X}^\prime _j-X_j)^{-\alpha (\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j \right] \end{aligned}$$
(41)

For frame-invariance, it is necessary that \(\tilde{\mathbf{F }}_{X_{ij}}^{\Psi }=Q_{ij}\) at all times and for all points within the nonlocal solid. More specifically, we obtain the following equation:

$$\begin{aligned}&c_1 \underbrace{\int _{X_{-_{j}}}^{X_j} \frac{(X_j-{X}^\prime _j)^{-\alpha (\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j}_{\text {Cannot be simplified further}}\nonumber \\&\quad + c_2 \underbrace{\int _{X_{j}}^{X_{+_j}} \frac{({X}^\prime _j-X_j)^{-\alpha (\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j}_{\text {Cannot be simplified further}} = 1 \end{aligned}$$
(42)

To ensure that the above relation holds true for all points \(\varvec{X}\), at all time instants, and for every order distribution, it is essential to evaluate the integrals highlighted in the equation above. However, given the functional variation of the VO, it is not straightforward to analytically evaluate the integrals. In fact, the possibility to obtain an analytical expression of the solution depends on the specific functional variation of the fractional-order. For the specific cases, where the analytical solution does not exist, it might not be possible to achieve a frame-invariant formulation. While the integrals could certainly be numerically evaluated, the numerical route poses additional computational challenges. The latter comment stems from the fact that the values of the specific integrals highlighted above depend on the position \(\varvec{X}\) as well as the specific functional variation of the order. Further, contrary to the type-I case where these factors turn out as the dimensions of the horizon of nonlocality, no physical interpretation can be conclusively drawn for the factors when using type-II derivatives.

Type-III derivative: By using the definition of the type-III derivatives and the arguments presented for the type-II derivative, Eq. (41) can be modified for a formulation using type-III derivatives as:

$$\begin{aligned} \tilde{\mathbf{F }}_{X_{ij}}^{\Psi }= & {} Q_{ij} \Bigg [ c_1 \underbrace{\int _{X_{-_{j}}}^{X_j} \frac{(X_j-{X}^\prime _j)^{-\alpha (\varvec{X}-\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}-\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j}_{\text {Cannot be simplified further}}\nonumber \\&+ c_2 \underbrace{\int _{X_{j}}^{X_{+_j}} \frac{({X}^\prime _j-X_j)^{-\alpha (\varvec{X}-\varvec{X}^\prime )}}{\Gamma (1-\alpha (\varvec{X}-\varvec{X}^\prime ))} \mathrm {d}{X}^\prime _j}_{\text {Cannot be simplified further}} \Bigg ] \end{aligned}$$
(43)

Given the specific form of the VO, similar to type-II derivatives, it is not always possible to obtain a closed form expression for the factors \(c_1\) and \(c_2\). It immediately follows that the remarks made above for type-II also hold true for type-III derivatives.

To summarize, the use of type-II and type-III VO derivatives is more likely to lead to non frame-invariant formulations. For cases, where a frame-invariant formulation can be achieved, the procedure to obtain the different factors is not general because frame-invariance must be re-valuated for every VO and at every point in the nonlocal solid. This makes the formulation computationally intensive and additionally, the obtained factors do not admit clear physical interpretations, unlike the length scale factors used in type-I derivatives.

1.3 C: Derivation of the governing equations

Theorem: The displacement field \(\varvec{u}(\varvec{x})\in \psi \), a class of all kinematically admissible displacement fields, which solves the Eqs. (7, 8) minimizes the total potential energy functional given in Eq. (6) in the class \(\psi \). Conversely, the displacement field minimizing the total potential energy functional in Eq. (6) solves the fractional-order nonlocal beam governing Eqs.  (7, 8).

Proof

Let \(\varvec{u}^*\in \psi \) be the unique solution to the system of Eqs. (7,8). Next, we assume \(\varvec{u} = \varvec{u}^* + \delta \varvec{u}\) is another kinematically admissible field such that \(\delta \varvec{u}\in \psi ^*\). The class \(\psi ^*\) is similar to the class \(\psi \) except for the boundary points \(x\in \{0,L\}\), where the displacement degrees of freedom \(\{u_0,w_0,D^1_x w_0\}=0\) in context of Eqs. (7,8). In the following, all quantities with the superscript \(\square ^*\) correspond to the displacement field \(\varvec{u}^*\). Under the above conditions, following the principles of variational calculus, Eq. (6) can be expressed as:

$$\begin{aligned} \Pi [\varvec{u}] = \Pi [\varvec{u}^*] + \delta \Pi + \frac{1}{2}\delta ^2\Pi \end{aligned}$$
(44)

where \(\delta \Pi \) and \(\delta ^2\Pi \) are the first and second variations of \(\Pi \) from \(\varvec{u}^*\). Using the Eqs. (5, 6, 9), the first variation \(\delta \Pi \) is obtained as:

$$\begin{aligned} \delta \Pi= & {} \underbrace{\int _{0}^{L} N_{xx}^* \left[ D_{x}^{\alpha (x)}\delta u_0 \right] \mathrm {d}x}_{{\mathcal {I}}_1} - \underbrace{\int _{0}^{L} M^*_{xx} \left[ D_{x}^{\alpha (x)} \left( D^1_x \delta w_0 \right) \right] \mathrm {d}x}_{{\mathcal {I}}_2} \nonumber \\&- \int _{0}^{L} F_a \delta u_0 \mathrm {d}x - \int _{0}^{L} F_t \delta w_0 \mathrm {d}x \end{aligned}$$
(45)

\(\square \)

\({Simplification\, of\, {\mathcal {I}}_1}\): We first simplify the term indicated as \({\mathcal {I}}_1\). Using the definition of the VO-RC fractional derivative given in Eq. (2), we obtain:

$$\begin{aligned} {\mathcal {I}}_1= & {} \frac{1}{2} \Bigg [ \underbrace{ \int _0^L N_{xx}^* \left[ l_-^{\alpha (x)-1} \Gamma (2-\alpha (x)) {}^{C}_{x-l_-} D^{\alpha (x)}_{x} \delta u_0 \right] \mathrm {d}x}_{{\mathcal {I}}_{11}} \nonumber \\&- \underbrace{\int _0^L N_{xx}^* \left[ l_+^{\alpha (x)-1} \Gamma (2-\alpha (x)) {}^{C}_{x}D^{\alpha (x)}_{x + l_+} \delta u_0 \right] \mathrm {d}x}_{{\mathcal {I}}_{12}} \Bigg ]\nonumber \\ \end{aligned}$$
(46)

From the definitions for the VO left- and right-handed Caputo derivatives given in Eq. (30) we obtain:

$$\begin{aligned} {\mathcal {I}}_{11}= & {} \int _0^L N^*_{xx} ~ l_-^{\alpha (x)-1} \frac{\Gamma (2-\alpha (x))}{\Gamma (1-\alpha (x))}\nonumber \\&\left[ \int _{x - l_-}^{x} \left( x - x^\prime \right) ^{-\alpha (x)} \left( D^1_{x^\prime } \delta u_0 \right) \mathrm {d}x^\prime \right] \mathrm {d}x \end{aligned}$$
(47a)
$$\begin{aligned} {\mathcal {I}}_{12}= & {} - \int _0^L N^*_{xx} ~ l_+^{\alpha (x)-1} \frac{\Gamma (2-\alpha (x))}{\Gamma (1-\alpha (x))} \nonumber \\&\left[ \int _{x}^{x + l_+} \left( x^\prime - x \right) ^{-\alpha (x)} \left( D^1_{x^\prime } \delta u_0 \right) \mathrm {d}x^\prime \right] \mathrm {d}x \end{aligned}$$
(47b)

By changing the order of integration in the above equation, we obtain:

$$\begin{aligned} {\mathcal {I}}_{11}= & {} \int _0^L D^1_{x^\prime } \delta u_0 \nonumber \\&\left[ \int _{x^\prime }^{x^\prime + l_-} l_-^{\alpha (x)-1} \frac{\Gamma (2-\alpha (x))}{\Gamma (1-\alpha (x))} \left( x - x^\prime \right) ^{-\alpha (x)} N^*_{xx} \mathrm {d}x \right] \mathrm {d}x^\prime \nonumber \\ \end{aligned}$$
(48a)
$$\begin{aligned} {\mathcal {I}}_{12}= & {} - \int _0^L D^1_{x^\prime } \delta u_0\nonumber \\&\left[ \int _{x^\prime - l_+}^{x^\prime } l_+^{\alpha (x)-1} \frac{\Gamma (2-\alpha (x))}{\Gamma (1-\alpha (x))} \left( x^\prime - x \right) ^{-\alpha (x)} N^*_{xx} \mathrm {d}x \right] \mathrm {d}x^\prime \nonumber \\ \end{aligned}$$
(48b)

Substituting the above expressions within Eq. (46) and using the definition of the VO Riesz integral given in Eq. (10), we obtain:

$$\begin{aligned} {\mathcal {I}}_1= & {} \int _0^L \left[ D^1_{x^\prime } \delta u_0 \right] \left[ I^{1-\alpha (x)}_{x^\prime } N^*_{xx} \right] \mathrm {d}x^\prime \nonumber \\\equiv & {} \int _0^L \left[ D^1_{x} \delta u_0 \right] \left[ I^{1-\alpha (x^\prime )}_{x} N^*_{xx} \right] \mathrm {d}x \end{aligned}$$
(49)

The above integrals are further evaluated using integration by parts in order to transfer the derivative from the independent the variable (axial displacement) to the secondary variable (stress resultant):

$$\begin{aligned} {\mathcal {I}}_1 = \delta u_0 \left[ I^{1-\alpha (x^\prime )}_x N^*_{xx} \right] \bigg \vert _{0}^{L} - \int _0^L \delta u_0 D^1_x\left[ I^{1-\alpha (x^\prime )}_x N^*_{xx} \right] \mathrm {d}x\nonumber \\ \end{aligned}$$
(50)

Now by using the definition of the VO R-RL derivative given in Eq. (11), we obtain:

$$\begin{aligned} {\mathcal {I}}_1 = \delta u_0 \left[ I^{1-\alpha (x^\prime )}_x N^*_{xx} \right] \bigg \vert _{0}^{L} - \int _0^L \delta u_0 \left[ {\mathfrak {D}}^{\alpha (x^\prime )}_x N^*_{xx} \right] \mathrm {d}x \end{aligned}$$
(51)

\({Simplification\, of\, {\mathcal {I}}_2}\): By retracing the steps through Eqs. (46-51), it can be similarly shown that:

$$\begin{aligned} {\mathcal {I}}_2= & {} \left( \delta D^1_x w_0\right) \left[ I^{1-\alpha (x^\prime )}_x M^*_{xx} \right] \bigg \vert _{0}^{L} - \delta w_0 \left[ {\mathfrak {D}}^{\alpha (x^\prime )}_x M^*_{xx} \right] \bigg \vert _{0}^{L} \nonumber \\&+ \int _0^L \delta w_0 D^1_x \left[ {\mathfrak {D}}^{\alpha (x^\prime )}_x N^*_{xx} \right] \mathrm {d}x \end{aligned}$$
(52)

Now by using the variational simplifications in Eqs. (45,51, 52) and the governing equations in Eq. (7,8) it can be shown that \(\delta \Pi =0\). Additionally, the second variation \(\delta ^2\Pi \) is given as:

$$\begin{aligned} \delta ^2\Pi = \int _\Omega E_0 \delta [{\varepsilon }_{xx}] \delta [{\varepsilon }_{xx}] \mathrm {d}V \end{aligned}$$
(53)

For any nontrivial \(\delta \varvec{u}\in \psi ^*\) we have from the above equation \(\delta ^2\Pi >0\), which leads us to the inequality:

$$\begin{aligned} \Pi [\varvec{u}] = \Pi [\varvec{u}^*] + \frac{1}{2} \delta ^2\Pi \ge \Pi [\varvec{u}^*] ~~\forall ~~\varvec{u}\in \psi \end{aligned}$$
(54)

It follows that the equality holds iff \(\varvec{u}=\varvec{u}^*\) \(\forall ~\varvec{x}\in \Omega \). It follows immediately that, as claimed in the Theorem above, the displacement field \(\varvec{u}^*\) which solves the system of equations in Eqs. (7, 8) minimizes the functional \(\Pi \) in the class \(\psi \).

Conversely, let \(\varvec{u}^*\) be the unique solution to the minimization problem: \(\varvec{\min }(\Pi [\varvec{u}])\) such that \(\varvec{u}\in \psi \). The minimization implies that for any variation \(\delta \varvec{u}\in \psi ^*\), \(\delta \Pi \) evaluated at \(\varvec{u}^*\) must be identically zero. The \(\delta \Pi \) is evaluated through Eqs. (45,51, 52) where \(\varvec{u}^*\), minimizes the functional \(\Pi \). It follows that the stress field corresponding to the displacement field \(\varvec{u}^*\) uniquely satisfies the equilibrium Eqs. (7,8), and thus the set of fields \(\{\varvec{u}^*,{\varvec{\varepsilon }}^*,{\varvec{\sigma }}^*\}\) solve the variable fractional-order Euler-Bernoulli beam equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, S., Jokar, M. & Semperlotti, F. Variable-order approach to nonlocal elasticity: theoretical formulation, order identification via deep learning, and applications. Comput Mech 69, 267–298 (2022). https://doi.org/10.1007/s00466-021-02093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02093-3

Keywords

Navigation