Skip to main content
Log in

A mixed finite element formulation for ductile damage modeling of thermoviscoplastic metals accounting for void shearing

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The modeling of ductile damage in engineering metallic materials is an essential step in a design process. In this paper, a mixed finite element formulation is developed to predict ductile damage in thermoviscoplastic porous metals. The novel aspect of the model is the enhancement of Gurson’s plasticity formulation with a void shearing mechanism capable describing thermoviscoplastic flow stress and thermal diffusion. Thus, the model accounts for void growth, nucleation and coalescence; strain and strain-rate hardening; thermal softening; heating by plastic work; thermal diffusion; localized shear banding; and material strength degradation. Associative plasticity and small strains are assumed. Both strong and weak forms describing the material complex behavior are presented. Time discretization by means of backward Euler and Newmark-\(\beta \) schemes is employed together with Galerkin finite element approximations, leading to a fully discrete set of nonlinear coupled algebraic equations. Two dynamic fracture problems involving ductile failure of plates under a plane strain assumption are numerically analyzed. The effects of the strain rate, thermal diffusion and void shearing mechanism are investigated in detail and shown to be significant. Results show that the present approach can reproduce plastically induced damage, localized shear banding, heating, porosity-induced stress degradation and crack-type damage evolution. The numerical performance is also reported in order to illustrate the convergence of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Van Do VN (2016) The behavior of ductile damage model on steel structure failure. Procedia Eng 142:26–33

    Google Scholar 

  2. Li H, Fu M, Lu J, Yang H (2011) Ductile fracture: experiments and computations. Int J Plast 27:147–180

    Google Scholar 

  3. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part i–yield criteria and flow rules for porous ductile media

  4. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Google Scholar 

  5. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  6. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Google Scholar 

  7. Thomson RD, Hancock J (1984) Ductile failure by void nucleation, growth and coalescence. Int J Fract 26:99–112

    Google Scholar 

  8. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490

    Google Scholar 

  9. Needleman A, Tvergaard V (1995) Analysis of a brittle-ductile transition under dynamic shear loading. Int J Solids Struct 32:2571–2590

    MATH  Google Scholar 

  10. Batra R, Lear MH (2004) Simulation of brittle and ductile fracture in an impact loaded prenotched plate. Int J Fract 126:179–203

    MATH  Google Scholar 

  11. Besson J, Steglich D, Brocks W (2003) Modeling of plane strain ductile rupture. Int J Plast 19:1517–1541

    MATH  Google Scholar 

  12. Huespe AE, Needleman A, Oliver J, Sánchez PJ (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plast 28:53–69

    Google Scholar 

  13. Nielsen KL, Tvergaard V (2010) Ductile shear failure or plug failure of spot welds modelled by modified gurson model. Eng Fract Mech 77:1031–1047

    Google Scholar 

  14. Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50

    MathSciNet  MATH  Google Scholar 

  15. Dittmann M, Aldakheel F, Schulte J, Schmidt F, Krüger M, Wriggers P, Hesch C (2020) Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids. Comput Methods Appl Mech Eng 361:112730

    MathSciNet  MATH  Google Scholar 

  16. Alves M, Jones N (1999) Influence of hydrostatic stress on failure of axisymmetric notched specimens. J Mech Phys Solids 47:643–667

    MATH  Google Scholar 

  17. Shimamura J, Ota S, Yasuda K, Ishikawa N (2016) Ductile fracture behavior of bainite-ma dual phase steels. ISIJ Int 56:2304–2312

    Google Scholar 

  18. Nahshon K, Hutchinson J (2008) Modification of the gurson model for shear failure. Eur J Mech A Solids 27:1

    MATH  Google Scholar 

  19. Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75:3276–3293

    Google Scholar 

  20. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24:1071–1096

    MATH  Google Scholar 

  21. Dunand M, Mohr D (2011) On the predictive capabilities of the shear modified gurson and the modified mohr-coulomb fracture models over a wide range of stress triaxialities and lode angles. J Mech Phys Solids 59:1374–1394

    MATH  Google Scholar 

  22. Malcher L, Pires FA, De Sá JC (2012) An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast 30:81–115

    Google Scholar 

  23. Dæhli LE, Morin D, Børvik T, Hopperstad OS (2018) A lode-dependent gurson model motivated by unit cell analyses. Eng Fract Mech 190:299–318

    Google Scholar 

  24. Wright TW, Batra RC (1985) The initiation and growth of adiabatic shear bands. Technical Report, ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD

  25. Batra R, Kim C (1991) Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands. Int J Eng Sci 29:949–960

    Google Scholar 

  26. Wright TW, Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. McAuliffe C, Waisman H (2013) Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements. Comput Mech 51:807–823

    MathSciNet  MATH  Google Scholar 

  28. Kubík P, Šebek F, Petruška J (2018) Notched specimen under compression for ductile failure criteria. Mech Mater 125:94–109

    Google Scholar 

  29. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150

    MathSciNet  MATH  Google Scholar 

  30. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    MATH  Google Scholar 

  31. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    MATH  Google Scholar 

  32. Remmers JJ, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77

    MATH  Google Scholar 

  33. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41:121–133

    MathSciNet  MATH  Google Scholar 

  34. Huespe AE, Needleman A, Oliver J, Sánchez PJ (2009) A finite thickness band method for ductile fracture analysis. Int J Plast 25:2349–2365

    Google Scholar 

  35. Crété J-P, Longère P, Cadou J-M (2014) Numerical modelling of crack propagation in ductile materials combining the gtn model and x-fem. Comput Methods Appl Mech Eng 275:204–233

    MathSciNet  MATH  Google Scholar 

  36. Aldakheel F, Wriggers P, Miehe C (2018) A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833

    MathSciNet  MATH  Google Scholar 

  37. Cao T-S, Montmitonnet P, Bouchard P-O (2013) A detailed description of the gurson-tvergaard-needleman model within a mixed velocity-pressure finite element formulation. Int J Numer Meth Eng 96:561–583

    MathSciNet  MATH  Google Scholar 

  38. Simonsen BC, Li S (2004) Mesh-free simulation of ductile fracture. Int J Numer Meth Eng 60:1425–1450

    MATH  Google Scholar 

  39. Ren B, Li S, Qian J, Zeng X (2011) Meshfree simulations of spall fracture. Comput Methods Appl Mech Eng 200:797–811

    MathSciNet  MATH  Google Scholar 

  40. Yoon Y-C, Song J-H (2014a) Extended particle difference method for weak and strong discontinuity problems: part i. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput Mech 53:1087–1103

    MathSciNet  MATH  Google Scholar 

  41. Yoon Y-C, Song J-H (2014b) Extended particle difference method for weak and strong discontinuity problems: part ii. Formulations and applications for various interfacial singularity problems. Comput Mech 53:1105–1128

    MathSciNet  Google Scholar 

  42. Hu Y, Ren B, Ni K, Li S (2020) Meshfree simulations of large scale ductile fracture of stiffened ship hull plates during ship stranding. Meccanica 55:833–860

  43. Ren B, Wu C, Lyu D (2020) An h-adaptive meshfree-enriched finite element method based on convex approximations for the three-dimensional ductile crack propagation simulation. Comput Aid Geom Des 76:101795

    MathSciNet  MATH  Google Scholar 

  44. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Google Scholar 

  45. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    MathSciNet  MATH  Google Scholar 

  46. Areias PM, Belytschko T (2006) Letter to the editor. Comput Methods Appl Mech Eng 195:1275–1276. https://doi.org/10.1016/j.cma.2005.03.006

    Article  MATH  Google Scholar 

  47. Song J-H, Areias PM, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67:868–893

    MATH  Google Scholar 

  48. Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int J Numer Meth Eng 75:577–599

    MATH  Google Scholar 

  49. Mostofizadeh S, Van der Meer F, Fagerström M, Sluys L, Larsson R (2018) An element subscale refinement for representation of the progressive fracture based on the phantom node approach. Comput Struct 196:134–145

    Google Scholar 

  50. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91:5–148

    MathSciNet  MATH  Google Scholar 

  51. McAuliffe C, Waisman H (2015) A unified model for metal failure capturing shear banding and fracture. Int J Plast 65:131–151

    Google Scholar 

  52. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

    MathSciNet  MATH  Google Scholar 

  53. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int J Plast 84:1–32

    Google Scholar 

  54. Svolos L, Bronkhorst CA, Waisman H (2020) Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method. J Mech Phys Solids 137:103861

    MathSciNet  Google Scholar 

  55. Becker R, Needleman A (1986) Effect of yield surface curvature on necking and failure in porous plastic solids. J Appl Mech 53:491–499

  56. Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284

    MATH  Google Scholar 

  57. Prior A (1994) Applications of implicit and explicit finite element techniques to metal forming. J Mater Process Technol 45:649–656

    Google Scholar 

  58. Sun J, Lee K, Lee H (2000) Comparison of implicit and explicit finite element methods for dynamic problems. J Mater Process Technol 105:110–118

    Google Scholar 

  59. Harewood F, McHugh P (2007) Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 39:481–494

    Google Scholar 

  60. Siad L, Ouali MO, Benabbes A (2008) Comparison of explicit and implicit finite element simulations of void growth and coalescence in porous ductile materials. Mater Des 29:319–329

    Google Scholar 

  61. Rebelo N, Nagtegaal J, Taylor L (1992) Comparison of implicit and explicit finite element methods in the simulation of metal forming processes. ABAQUS USERS CONFERENCE

  62. Kojić M, Vlastelica I, Živković M (2004) Implicit stress integration algorithm for gurson model in case of large strain shell deformation, facta universitatis-series: mechanics. Autom Control Robot 4:85–99

    MATH  Google Scholar 

  63. Longère P, Geffroy A-G, Leblé B, Dragon A (2012) Modeling the transition between dense metal and damaged (microporous) metal viscoplasticity. Int J Damage Mech 21:1020–1063

    Google Scholar 

  64. Kiran R, Khandelwal K (2014) Gurson model parameters for ductile fracture simulation in astm a992 steels. Fatigue Fracture Eng Mater Struct 37:171–183

    Google Scholar 

  65. Zhou J, Gao X, Sobotka JC, Webler BA, Cockeram BV (2014) On the extension of the gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions. Int J Solids Struct 51:3273–3291

    Google Scholar 

  66. Jiang W, Li Y, Su J (2016) Modified gtn model for a broad range of stress states and application to ductile fracture. Eur J Mech-A/Solids 57:132–148

    MathSciNet  MATH  Google Scholar 

  67. Holte I, Niordson C, Nielsen K, Tvergaard V (2019) Investigation of a gradient enriched gurson-tvergaard model for porous strain hardening materials. Eur J Mech-A/Solids 75:472–484

    MathSciNet  MATH  Google Scholar 

  68. Chen Z, Dong X (2009) The gtn damage model based on hill’48 anisotropic yield criterion and its application in sheet metal forming. Comput Mater Sci 44:1013–1021

    Google Scholar 

  69. Vadillo G, Reboul J, Fernández-Sáez J (2016) A modified gurson model to account for the influence of the lode parameter at high triaxialities. Eur J Mech-A/Solids 56:31–44

    MathSciNet  MATH  Google Scholar 

  70. Shahzamanian M (2018) Anisotropic gurson-tvergaard-needleman plasticity and damage model for finite element analysis of elastic-plastic problems. Int J Numer Meth Eng 115:1527–1551

    MathSciNet  Google Scholar 

  71. Mengoni M, Ponthot J-P (2015) A generic anisotropic continuum damage model integration scheme adaptable to both ductile damage and biological damage-like situations. Int J Plast 66:46–70

    Google Scholar 

  72. Zavaliangos A, Anand L (1992) Thermal aspects of shear localization in microporous viscoplastic solids. Int J Numer Meth Eng 33:595–634

    MATH  Google Scholar 

  73. Zavaliangos A, Anand L (1993) Thermo-elasto-viscoplasticity of isotropic porous metals. J Mech Phys Solids 41:1087–1118

    Google Scholar 

  74. Batra R, Jin X (1994) Analysis of dynamic shear bands in porous thermally softening viscoplastic materials. Arch Mech 46:13–36

    MATH  Google Scholar 

  75. Batra R, Love B (2004) Adiabatic shear bands in functionally graded materials. J Therm Stress 27:1101–1123

    Google Scholar 

  76. Batra R, Lear MH (2005) Adiabatic shear banding in plane strain tensile deformations of 11 thermoelastoviscoplastic materials with finite thermal wave speed. Int J Plast 21:1521–1545

    MATH  Google Scholar 

  77. Nguyen VD, Harik P, Hilhorst A, Jacques P, Pardoen T, Noels L (2019) A multi-mechanism non-local porosity model for highly-ductile materials; application to high entropy alloys. Asian Pacific congress on computational mechanics–APCOM 2019, computational & multiscale mechanics of materials

  78. Nielsen KL, Tvergaard V (2009) Effect of a shear modified gurson model on damage development in a fsw tensile specimen. Int J Solids Struct 46:587–601

    MATH  Google Scholar 

  79. Besson J (2009) Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int J Plast 25:2204–2221

    Google Scholar 

  80. Hütter G (2017) A micromechanical gradient extension of gurson’s model of ductile damage within the theory of microdilatational media. Int J Solids Struct 110:15–23

    Google Scholar 

  81. Reboul J, Vadillo G (2018) Homogenized gurson-type behavior equations for strain rate sensitive materials. Acta Mech 229:3517–3536

    MathSciNet  MATH  Google Scholar 

  82. Voyiadjis GZ, Kattan PI (1992) A plasticity-damage theory for large deformation of solids-i. Theoretical formulation. Int J Eng Sci 30:1089–1108

    MATH  Google Scholar 

  83. Voyiadjis G (2012) Advances in damage mechanics: metals and metal matrix composites. Elsevier, Amsterdam

    MATH  Google Scholar 

  84. Tvergaard V (1982) Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids 30:399–425

    MATH  Google Scholar 

  85. Chu C, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:249–256

    Google Scholar 

  86. Needleman A, Tvergaard V (1991) An analysis of dynamic, ductile crack growth in a double edge cracked specimen. Int J Fract 49:41–67

    Google Scholar 

  87. Zhou M, Rosakis A, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates-i. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44:981–1006

    Google Scholar 

  88. Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W (2002) Mesh-free galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39:1213–1240

    MATH  Google Scholar 

  89. Batra R, Love B (2006) Consideration of microstructural effects in the analysis of adiabatic shear bands in a tungsten heavy alloy. Int J Plast 22:1858–1878

    MATH  Google Scholar 

  90. McAuliffe C, Waisman H (2016) A coupled phase field shear band model for ductile-brittle transition in notched plate impacts. Comput Methods Appl Mech Eng 305:173–195

    MathSciNet  MATH  Google Scholar 

  91. Babuška I (1971) Error-bounds for finite element method. Numer Math 16:322–333

    MathSciNet  MATH  Google Scholar 

  92. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. Math Modell Numer Anal 8:129–151

  93. Simo J, Kennedy J, Taylor R (1989) Complementary mixed finite element formulations for elastoplasticity. Comput Methods Appl Mech Eng 74:177–206

    MathSciNet  MATH  Google Scholar 

  94. Becker R, Needleman A, Richmond O, Tvergaard V (1988) Void growth and failure in notched bars. J Mech Phys Solids 36:317–351

    Google Scholar 

  95. Taylor RL, Govindjee S (2014) FEAP-a finite element analysis program, user manual. University of California, Berkeley. http://projects.ce.berkeley.edu/feap

  96. Geuzaine C, Remacle J-F (2009) Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Meth Eng 79:1309–1331

    MathSciNet  MATH  Google Scholar 

  97. Henderson A, Guide AP (2007) A parallel visualization application. Kitware Inc, New York

    Google Scholar 

  98. Miehe C, Aldakheel F, Teichtmeister S (2017) Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int J Numer Meth Eng 111:816–863

    MathSciNet  Google Scholar 

  99. Roth CC, Mohr D (2014) Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modeling. Int J Plast 56:19–44

    Google Scholar 

Download references

Acknowledgements

The authors appreciate all the support provided by the Department of Civil Engineering and Engineering Mechanics of the University of Columbia, and the financial aid granted by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Pascon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Matrices and force vectors

Appendix A: Matrices and force vectors

The mass matrices and force vectors defined in the system of Eqs. (5357) are given by the following expressions in index notation:

$$\begin{aligned}&(\varvec{M}^u)_{ik} = \int _{\Omega } \left[ \frac{\rho }{\beta \Delta t^2} (\varvec{N}_u)_{ij} (\varvec{N}_u)_{kj} \right] dV \end{aligned}$$
(72)
$$\begin{aligned}&\quad (\varvec{f}^u_{int})_k = \int _{\Omega } \left[ (\nabla \varvec{N}_u)_{kij} (\hat{\varvec{\sigma }} \varvec{N}_{\sigma })_{ij} \right] dV \end{aligned}$$
(73)
$$\begin{aligned}&\quad (\varvec{f}^u_{ext})_k = \int _{\partial \Omega } \left[ (\varvec{N}_u)_{kj} (\bar{\varvec{t}})_j \right] dS \end{aligned}$$
(74)
$$\begin{aligned}&\quad (\varvec{M}^f)_{ik} = \int _{\Omega } \left[ (\varvec{N}_f)_i (\varvec{N}_f)_k \right] dV \end{aligned}$$
(75)
$$\begin{aligned}&\quad (\varvec{f}^f)_k = -\Delta t \int _{\Omega } \left[ g_f (\varvec{N}_f)_k \right] dV \end{aligned}$$
(76)
$$\begin{aligned}&\quad (\varvec{M}^T)_{ik} = \int _{\Omega } \left[ \rho {\hat{c}} (\varvec{N}_T)_i (\varvec{N}_T)_k \right] dV \end{aligned}$$
(77)
$$\begin{aligned}&\quad (\varvec{f}^T_{int})_k = \Delta t \int _{\Omega } \left[ \kappa ({\hat{T}})_m (\nabla \varvec{N}_T)_{ki} (\nabla \varvec{N}_T)_{mi} \right] dV \end{aligned}$$
(78)
$$\begin{aligned}&\quad (\varvec{f}^T_{ext})_k = \Delta t \int _{\Omega } \left[ \chi (1 - f) \sigma _Y g_p (\varvec{N}_T)_k \right] dV \nonumber \\&\qquad + \Delta t \int _{\partial \Omega } \left[ \kappa (\varvec{N}_T)_k \bar{\varvec{q}} \right] dS \end{aligned}$$
(79)
$$\begin{aligned}&\quad (\varvec{M}^{\sigma })_{ik} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{imj} (\varvec{N}_{\sigma })_{kmj} \right] dV \end{aligned}$$
(80)
$$\begin{aligned}&\quad (\varvec{f}^{\sigma }_{int})_k = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} (\varvec{\sigma }_{\epsilon _e})_{ij} \right] dV \end{aligned}$$
(81)
$$\begin{aligned}&\quad (\varvec{M}^{\bar{\gamma _p}})_{ik} = \int _{\Omega } \left[ (\varvec{N}_{\bar{\gamma _p}})_i (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(82)
$$\begin{aligned}&\quad (\varvec{f}^{\bar{\gamma _p}})_k = -\Delta t \int _{\Omega } \left[ g_p (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(83)

The remaining matrices that appear in the fully discrete linearized system (64) are also provided in index notation:

$$\begin{aligned}&(\varvec{K}^{u \sigma })_{km} = \int _{\Omega } \left[ (\nabla \varvec{N}_u)_{kij} (\varvec{N}_{\sigma })_{mij} \right] dV \end{aligned}$$
(84)
$$\begin{aligned}&\quad (\varvec{G}_f^f)_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_f}{\partial f} (\varvec{N}_f)_k (\varvec{N}_f)_m \right] dV \end{aligned}$$
(85)
$$\begin{aligned}&\quad (\varvec{G}_f^T)_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_f}{\partial T} (\varvec{N}_f)_k (\varvec{N}_T)_m \right] dV \end{aligned}$$
(86)
$$\begin{aligned}&\quad (\varvec{G}_f^{\sigma })_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_f}{\partial \varvec{\sigma }} (\varvec{N}_f)_k (\varvec{N}_{\sigma })_m \right] dV \end{aligned}$$
(87)
$$\begin{aligned}&\quad (\varvec{G}_f^{\bar{\gamma _p}})_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_f}{\partial \bar{\gamma _p}} (\varvec{N}_f)_k (\varvec{N}_{\bar{\gamma _p}})_m \right] dV \end{aligned}$$
(88)
$$\begin{aligned}&\quad (\varvec{L}_T^f)_{km} = \Delta t \int _{\Omega } \left[ -\chi (\varvec{N}_f)_m \sigma _Y g_p (\varvec{N}_T)_k \right. \nonumber \\&\qquad + \chi (1 - f) \sigma _Y\nonumber \\&\qquad \left. \frac{\partial g_p}{\partial f} (\varvec{N}_T)_k (\varvec{N}_f)_m + \chi (1 - f) g_p \frac{\partial \sigma _Y}{\partial f} (\varvec{N}_T)_k (\varvec{N}_f)_m \right] dV \end{aligned}$$
(89)
$$\begin{aligned}&\quad (\varvec{L}_T^T)_{km} = \Delta t \int _{\Omega } \left[ \chi (1 - f) \sigma _Y \frac{\partial g_p}{\partial T} (\varvec{N}_T)_k (\varvec{N}_T)_m \right] dV \nonumber \\&\qquad + \Delta t \int _{\Omega } \left[ \kappa (\nabla \varvec{N}_T)_{ki} (\nabla \varvec{N}_T)_{mi} \right] dV \end{aligned}$$
(90)
$$\begin{aligned}&\quad (\varvec{L}_T^{\sigma })_{km} = \Delta t \int _{\Omega } \left[ \chi (1 - f) \sigma _Y \frac{\partial g_p}{\partial \varvec{\sigma }} (\varvec{N}_T)_k (\varvec{N}_{\sigma })_m \right. \nonumber \\&\quad \left. + \chi (1 - f) g_p \frac{\partial \sigma _Y}{\partial \varvec{\sigma }} (\varvec{N}_T)_k (\varvec{N}_{\sigma })_m \right] dV \end{aligned}$$
(91)
$$\begin{aligned}&\quad (\varvec{L}_T^{\bar{\gamma _p}})_{km} = \Delta t \int _{\Omega } \left[ \chi (1 - f) \sigma _Y \frac{\partial g_p}{\partial \bar{\gamma _p}} (\varvec{N}_T)_k (\varvec{N}_{\bar{\gamma _p}})_m \right] dV \end{aligned}$$
(92)
$$\begin{aligned}&\quad (\varvec{H}_{\sigma }^u)_{km} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} \frac{\partial (\varvec{\sigma }_{\epsilon _e})_{ij}}{\partial \varvec{u}} (\varvec{N}_u)_m \right] dV \end{aligned}$$
(93)
$$\begin{aligned}&\quad (\varvec{H}_{\sigma }^f)_{km} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} \frac{\partial (\varvec{\sigma }_{\epsilon _e})_{ij}}{\partial f} (\varvec{N}_f)_m \right] dV \end{aligned}$$
(94)
$$\begin{aligned}&\quad (\varvec{H}_{\sigma }^T)_{km} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} \frac{\partial (\varvec{\sigma }_{\epsilon _e})_{ij}}{\partial T} (\varvec{N}_T)_m \right] dV \end{aligned}$$
(95)
$$\begin{aligned}&\quad (\varvec{H}_{\sigma }^{\sigma })_{km} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} \frac{\partial (\varvec{\sigma }_{\epsilon _e})_{ij}}{\partial \varvec{\sigma }} (\varvec{N}_{\sigma })_m \right] dV \end{aligned}$$
(96)
$$\begin{aligned}&\quad (\varvec{H}_{\sigma }^{\bar{\gamma _p}})_{km} = \int _{\Omega } \left[ (\varvec{N}_{\sigma })_{kij} \frac{\partial (\varvec{\sigma }_{\epsilon _e})_{ij}}{\partial \bar{\gamma _p}} (\varvec{N}_{\bar{\gamma _p}})_m \right] dV \end{aligned}$$
(97)
$$\begin{aligned}&\quad (\varvec{P}_{\bar{\gamma _p}}^f)_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_p}{\partial f} (\varvec{N}_f)_m (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(98)
$$\begin{aligned}&\quad (\varvec{P}_{\bar{\gamma _p}}^T)_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_p}{\partial T} (\varvec{N}_T)_m (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(99)
$$\begin{aligned}&\quad (\varvec{P}_{\bar{\gamma _p}}^{\sigma })_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_p}{\partial \varvec{\sigma }} (\varvec{N}_{\sigma })_m (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(100)
$$\begin{aligned}&\quad (\varvec{P}_{\bar{\gamma _p}}^{\bar{\gamma _p}})_{km} = -\Delta t \int _{\Omega } \left[ \frac{\partial g_p}{\partial \bar{\gamma _p}} (\varvec{N}_{\bar{\gamma _p}})_m (\varvec{N}_{\bar{\gamma _p}})_k \right] dV \end{aligned}$$
(101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascon, J.P., Waisman, H. A mixed finite element formulation for ductile damage modeling of thermoviscoplastic metals accounting for void shearing. Comput Mech 67, 1307–1330 (2021). https://doi.org/10.1007/s00466-021-02000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02000-w

Keywords

Navigation