Appendix A. Three-dimensional finite deformation elastoplasticity theory
This appendix reviews elastoplasticity at finite strains. The elastic domain is specified by means of a yield criterion, which is expressed in stresses defined in the deformed spatial configuration. For the case of small strains, the strain tensor \(\varvec{\varepsilon }^{{}^{}}_{{}_{}}\) can be additively decomposed as \(\varvec{\varepsilon }^{{}^{}}_{{}_{}}=\varvec{\varepsilon }^{{e}^{}}_{{}_{}}+\varvec{\varepsilon }^{{p}^{}}_{{}_{}}\). The resulting stress is then only dependent on the elastic strains \(\varvec{\varepsilon }^{{e}^{}}_{{}_{}}\) and internal variables \(\xi \). For the case of large deformations, an additive split of the strain measures is no more permitted. Instead, a multiplicative decomposition of the deformation gradient is used as introduced in [28] and well-rooted in the modelling of crystal-plasticity e.g. [29].
Appendix A.1. Kinematical background of multiplicative plasticity
To characterise the kinematics of finite deformations, the deformation map \(\varvec{\varphi }({\mathbf {X}},{t})\) is introduced. It maps any point \(\mathbf {X}\) from the undeformed material configuration \(\mathcal {B}_0\) to its new position \(\displaystyle {\mathbf {x}=\varvec{\varphi }({\mathbf {X}},{t})}\) in the deformed spatial configuration \(\mathcal {B}_t\). The deformation gradient \(\displaystyle {\mathbf {F}_{}^{{}^{}}=\frac{\partial \mathbf {\varvec{\varphi }}}{\partial \mathbf {X}}\left( \mathbf {X},t\right) }\) can be multiplicatively decomposed into an elastic and a plastic part \(\mathbf {F}_{}^{{e}^{}}\) and \(\mathbf {F}_{}^{{p}^{}}\), respectively:
$$\begin{aligned} \mathbf {F}_{}^{{}^{}}=\mathbf {F}_{}^{{e}^{}}\mathbf {F}_{}^{{p}^{}}. \end{aligned}$$
(A.1)
Figure 12 visualises the kinematics of elastoplasticity. The elastic left Cauchy-Green strain \(\mathbf {b}_{}^{{e}^{}}\) and the plastic right Cauchy-Green strain \(\mathbf {C}_{}^{{p}^{}}\) are introduced as
$$\begin{aligned} \mathbf {b}_{}^{{e}^{}}:=\mathbf {F}_{}^{{e}^{}}\mathbf {F}_{}^{{e}^{T}} \quad \text {and}\quad \mathbf {C}_{}^{{p}^{}}:=\mathbf {F}_{}^{{p}^{T}}\mathbf {F}_{}^{{p}^{}}. \end{aligned}$$
(A.2)
Both strain measures are related by \(\displaystyle {\mathbf {b}_{}^{{e}^{}}=\mathbf {F}_{}^{{}^{}}\mathbf {C}_{}^{{p}^{-1}}\mathbf {F}_{}^{{T}^{}}}\). The spatial velocity gradient \(\varvec{\ell }^{}_{}\) is defined as
$$\begin{aligned} \varvec{\ell }^{}_{}:=\dot{\mathbf {F}}_{}^{{}^{}}\mathbf {F}_{}^{{-1}^{}} \end{aligned}$$
(A.3)
and can be additively decomposed into a symmetric part d \(\pmb {\mathscr {d}}\) and a skew-symmetric part w. Here, a superposed dot denotes the material time derivative \(\displaystyle {\dot{\overline{\left( \bullet \right) }}=\left. \frac{\partial \left( \bullet \right) }{\partial t}\right| _{\mathbf {X}}}\).
Appendix A.2. Constitutive equations
It is assumed that the stored energy density \(\psi \) depends on the elastic deformation. Restricting to isotropy, \(\psi \) is a function of the elastic left Cauchy-Green strain \(\mathbf {b}_{}^{{e}^{}}\) only, i.e.
$$\begin{aligned} \psi =\psi (\mathbf {b}_{}^{{e}^{}}). \end{aligned}$$
(A.4)
A possible hardening contribution \(\mathcal {H}\) depends only on the internal variable \(\xi \). Then, the free energy density is introduced as follows:
$$\begin{aligned} \Psi (\mathbf {b}_{}^{{e}^{}},\xi )=\psi (\mathbf {b}_{}^{{e}^{}})+\mathcal {H}(\xi ). \end{aligned}$$
(A.5)
The dissipation power \(\mathcal {D}\) is defined as the difference between the stress power and the rate of the free energy density and is greater or equal zero
$$\begin{aligned} \mathcal {D}=\varvec{\tau }:\varvec{d}-\frac{\hbox {d}\Psi }{\hbox {d}t}(\mathbf {b}_{}^{{e}^{}},\xi )\ge 0. \end{aligned}$$
(A.6)
Here, \(\varvec{\tau }\) denotes the (symmetric) Kirchhoff stress. Equation (A.6) denotes the Clausius-Duhem inequality. For a purely elastic response \(\mathcal {D}=0\). For the inelastic case however, \(\mathcal {D}>0\). Due to the isotropy assumption, Eq. (A.6) transforms to
$$\begin{aligned} \mathcal {D}=&\left[ \varvec{\tau }-2\frac{\partial \Psi }{\partial \mathbf {b}_{}^{{e}^{}}}(\mathbf {b}_{}^{{e}^{}},\xi )\mathbf {b}_{}^{{e}^{}}\right] :\varvec{d}\nonumber \\&+\left[ 2\frac{\partial \Psi }{\partial \mathbf {b}_{}^{{e}^{}}}(\mathbf {b}_{}^{{e}^{}},\xi )\mathbf {b}_{}^{{e}^{}}\right] :\left[ -\frac{1}{2}\mathcal {L}_{\upsilon }\left( \mathbf {b}^e\right) \mathbf {b}_{}^{{e}^{-1}}\right] \nonumber \\&+\left[ -\frac{\partial \Psi }{\partial \xi }(\mathbf {b}_{}^{{e}^{}},\xi )\dot{\xi }\right] \ge 0 \end{aligned}$$
(A.7)
with \(\displaystyle {\mathcal {L}_{\upsilon }\left( \mathbf {b}^e\right) :=\mathbf {F}_{}^{{}^{}}\dot{\mathbf {C}}_{}^{{p}^{-1}}\mathbf {F}_{}^{{T}^{}}}\) denoting the Lie derivative of \(\mathbf {b}_{}^{{e}^{}}\). Equation (A.7) has to hold for any admissible process. This standard argument renders the constitutive relation and the reduced form of the dissipation inequality as summarised below:
$$\begin{aligned}&\varvec{\tau }=2\frac{\partial \Psi }{\partial \mathbf {b}_{}^{{e}^{}}}(\mathbf {b}_{}^{{e}^{}},\xi )\mathbf {b}_{}^{{e}^{}}, \end{aligned}$$
(A.8)
$$\begin{aligned}&\mathcal {D}_{red}=\varvec{\tau }:\left[ -\frac{1}{2}\mathcal {L}_{\upsilon }\left( \mathbf {b}^e\right) \mathbf {b}_{}^{{e}^{-1}}\right] +q\dot{\xi }\ge 0. \end{aligned}$$
(A.9)
The thermodynamic force conjugate to the internal variable is: \(\displaystyle {q=-\frac{\partial \Psi }{\partial \xi }}(\mathbf {b}_{}^{{e}^{}},\xi )\). Here, the first summand of Eq. (A.9) is defined to be the rate of the plastic work density \(\psi ^p\). Thus,
$$\begin{aligned} \dot{\psi }^p=\varvec{\tau }:\left[ -\frac{1}{2}\mathcal {L}_{\upsilon }\left( \mathbf {b}^e\right) \mathbf {b}_{}^{{e}^{-1}}\right] . \end{aligned}$$
(A.10)
Appendix A.3. Evolution equation
According to the postulate of maximum dissipation, the actual state (\(\varvec{\tau }\), q) of a plastically deformed body renders the maximum of the dissipation function \(\mathcal {D}_{red}\) for the actual evolution quantities. To obtain the evolution equations for \(\mathbf {b}_{}^{{e}^{}}\) and \(\xi \), the dissipation has to be maximised under constraints. The constrained maximisation problem is then solved by means of the Lagrange multiplier method. Therefore, a Lagrange functional \(\mathcal {L}\) is defined. The Lagrange functional is the sum of the negative reduced dissipation and a constraint multiplied with the Lagrange multiplier \(\dot{\gamma }\ge 0\):
$$\begin{aligned} \mathcal {L}=-\mathcal {D}_{red}+\dot{\gamma }\Phi . \end{aligned}$$
(A.11)
The constraint \(\Phi \le 0\) describes the region of admissible stresses, i.e. the yield surface. The Lagrange functional must be stationary. Necessary conditions are obtained with
$$\begin{aligned}&\frac{\partial \mathcal {L}}{\partial \varvec{\tau }}(\mathbf {b}_{}^{{e}^{}},\xi )=0\rightarrow -\frac{1}{2}\mathcal {L}_{\upsilon }\left( \mathbf {b}^e\right) =\dot{\gamma }\frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau },q)\mathbf {b}_{}^{{e}^{}}, \end{aligned}$$
(A.12)
$$\begin{aligned}&\frac{\partial \mathcal {L}}{\partial q}(\mathbf {b}_{}^{{e}^{}},\xi )=0\rightarrow \dot{\xi }=\dot{\gamma }\frac{\partial \Phi }{\partial q}(\varvec{\tau },q). \end{aligned}$$
(A.13)
Together with the Karush-Kuhn-Tucker (KKT) conditions, a first order system of equations is obtained:
$$\begin{aligned}&\dot{\xi }=\dot{\gamma }\frac{\partial \Phi }{\partial q}(\varvec{\tau },q) \end{aligned}$$
(A.14)
$$\begin{aligned}&\dot{\mathbf {b}}_{}^{{e}^{}}=\varvec{\ell }^{}_{}\mathbf {b}_{}^{{e}^{}}+\mathbf {b}_{}^{{e}^{}}\varvec{\ell }^{T}_{}-2\dot{\gamma }\frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau },q)\mathbf {b}_{}^{{e}^{}} \end{aligned}$$
(A.15)
$$\begin{aligned}&\hbox {KKT:}\quad \dot{\gamma }\ge 0,\quad \Phi (\varvec{\tau },q)\le 0,\quad \dot{\gamma }\Phi (\varvec{\tau },q)=0 \end{aligned}$$
(A.16)
In terms of material quantities, Eq. (A.15) is rewritten as
$$\begin{aligned} \dot{\mathbf {C}}_{}^{{p}^{-1}}=\left[ -2\dot{\gamma }\mathbf {C}_{}^{{-1}^{}}\mathbf {D}\right] \mathbf {C}_{}^{{p}^{-1}}, \end{aligned}$$
(A.17)
with the co-variant pull back of the flow direction
$$\begin{aligned} \mathbf {D}=\mathbf {F}_{}^{{T}^{}}\frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau }_,q)\mathbf {F}_{}^{{}^{}}. \end{aligned}$$
(A.18)
The description of the evolution equation in terms of material quantities returns a first order differential equation which can be easily solved with appropriate initial conditions. To evaluate the temporal evolution, a typical time step \(\left[ t_n,t_{n+1}\right] \) is assumed. The variables \(\mathbf {F}_{n}^{{}^{}}\), \(\mathbf {C}_{n}^{{p}^{-1}}\) and \(\xi _n\) at \(t_n\) are known. The evolution equations are rewritten for general \(t \in \left[ t_n,t_{n+1}\right] \)
$$\begin{aligned} \dot{\xi }_t=\dot{\gamma }_t\frac{\partial \Phi }{\partial q}(\varvec{\tau }_t,q_t) \quad \text {and}\quad \dot{\mathbf {C}}_{t}^{{p}^{-1}}=\left[ -2\dot{\gamma }_t \mathbf {C}_{t}^{{-1}^{}}\mathbf {D}_t\right] \mathbf {C}_{t}^{{p}^{-1}} \end{aligned}$$
(A.19)
with
$$\begin{aligned}&\mathbf {D}_t=\mathbf {F}_{t}^{{T}^{}}\frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau }_t,q_t)\mathbf {F}_{t}^{{}^{}}, \end{aligned}$$
(A.20)
$$\begin{aligned}&\hbox {KKT:}\quad \dot{\gamma }_t\ge 0, \quad \Phi (\varvec{\tau }_t,q_t)\le 0,\quad \dot{\gamma }_t\Phi (\varvec{\tau }_t,q_t)=0.\nonumber \\ \end{aligned}$$
(A.21)
The following steps are motivated by the solution of general first order linear problems. The solution for \(\displaystyle {\dot{y}(t)=my(t)}\) with \(\displaystyle {y(t)\vert _{t=t_n}=y(t_n)}\) is given by \(\displaystyle {y(t)=e^{m \Delta t}y(t_n)}\), where \(\Delta t=t_{}-t_{n}\). The algorithmic approximation of the inverse plastic right Cauchy-Green strain thus reads
$$\begin{aligned} \tilde{\mathbf {C}}_{t}^{{p}^{-1}}=e^{\left( -2\Delta \gamma _{t}\mathbf {C}_{t}^{{-1}^{}}{\mathbf {D}}_{t}\right) }\mathbf {C}_{n}^{{p}^{-1}}. \end{aligned}$$
(A.22)
In the sequel, variables superposed by a \(\tilde{\bullet }\) denote the algorithmic approximation. Freezing the plastic flow, and taking an elastic step, while ignoring constraints on the stress field by the yield criterion, returns an elastic trial step, identified by the superscript \(^{tr}\). The trial elastic left Cauchy-Green strain \(\mathbf {b}_{t}^{{e}^{tr}}\) is obtained as \(\displaystyle {\mathbf {b}_{t}^{{e}^{tr}}=\mathbf {F}_{t}^{{}^{}}\mathbf {C}_{n}^{{p}^{-1}}\mathbf {F}_{t}^{{T}^{}}}\). Pre- and postmultiplying Eq. (A.22) with \(\mathbf {F}_{t}^{{}^{}}\) and \(\mathbf {F}_{t}^{{T}^{}}\), and making use of the property \(\displaystyle {\mathbf {F}_{}^{{}^{}} e^{\mathbf {A}}\mathbf {F}_{}^{{-1}^{}}}=e^{\left( \mathbf {F}_{}^{{}^{}}\mathbf {A}\mathbf {F}_{}^{{-1}^{}}\right) }\) finally yields the discretised flow rule in terms of spatial quantities:
$$\begin{aligned} \tilde{\xi }_{t}=\xi _{n}+\Delta \gamma _{t}\frac{\partial \Phi }{\partial q}(\varvec{\tau }_t,q_t) \quad \text {and}\quad \tilde{\mathbf {b}}_{t}^{{e}^{}}=e^{\left( -2\Delta \gamma _{t}\frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau }_t,q_t)\right) }\mathbf {b}_{t}^{{e}^{tr}} \end{aligned}$$
(A.23)
with the KKT conditions in Eq. (A.21).
Appendix B. Implementation of isotropic plasticity
This appendix reiterates the implementation of multiplicative elastoplasticity. First, the discretised flow rule, introduced in “Appendix A.3” is reformulated in terms of logarithmic strains. Then, a return algorithm to map the stresses to the admissible region is introduced for the example of J2-plasticity.
To solve nonlinear elastoplastic problems, use is made of an iterative Newton-Raphson solver that requires the algorithmic elastoplastic tangent. Its derivation is outlined at the end of this appendix.
Appendix B.1. Reduction to principal strains and stresses
The assumption of isotropy renders the principal directions of the Kirchhoff stress \(\varvec{\tau }\) to coincide with the principal directions of the elastic left Cauchy-Green strain \(\mathbf {b}_{}^{{e}^{}}\) [27, 30]. Their spectral decompositions are, respectively
$$\begin{aligned} \mathbf {b}_{}^{{e}^{}}=\sum _{A=1}^3\left[ \lambda _{{A}_{}}^{{e}^{{}^{}}}\right] ^2\mathbf {n}^{}_{A_{}}\otimes \mathbf {n}^{}_{A_{}}\quad \hbox {and}\quad \varvec{\tau }=\sum _{A=1}^3\beta _A\mathbf {n}^{}_{A_{}}\otimes \mathbf {n}^{}_{A_{}}. \end{aligned}$$
(B.1)
The spectral decomposition of \(\mathbf {b}_{t}^{{e}^{tr}}\) yields
$$\begin{aligned} \mathbf {b}_{t}^{{e}^{tr}}=\sum _{A=1}^3\left[ \lambda _{{A}_{t}}^{{e}^{{tr}^{}}}\right] ^2\mathbf {n}^{tr}_{A_{t}}\otimes \mathbf {n}^{tr}_{A_{t}}. \end{aligned}$$
(B.2)
The restriction to isotropy implies the existence of a function \(\hat{\Phi }\) such that \(\hat{\Phi }(\beta _1,\beta _2,\beta _3,q)=\Phi (\varvec{\tau },q)\) [27]. This leads to
$$\begin{aligned} \frac{\partial \Phi }{\partial \varvec{\tau }}(\varvec{\tau },q)=\sum _{A=1}^3\frac{\partial \hat{\Phi }}{\partial \beta _A}(\beta _A,q)\mathbf {n}^{}_{A_{}}\otimes \mathbf {n}^{}_{A_{}}. \end{aligned}$$
(B.3)
Applying relation (B.3) to Eq. (A.23), one obtains the spectral decomposition of \(\mathbf {b}_{t}^{{e}^{tr}}\) as
$$\begin{aligned} \mathbf {b}_{t}^{{e}^{tr}}=\sum _{A=1}^3e^{\left( 2\Delta \gamma _{t}\frac{\partial \hat{\Phi }}{\partial \beta _A}(\beta _A,q)\right) }\left[ \tilde{\lambda }_{{A}_{}}^{{e}^{{}^{}}}\right] ^2\tilde{\mathbf {n}}^{}_{A_{t}}\otimes \tilde{\mathbf {n}}^{}_{A_{t}}. \end{aligned}$$
(B.4)
Comparing Eq. (B.2) and (B.4), the uniqueness of \(\mathbf {b}_{t}^{{e}^{tr}}\) yields:
$$\begin{aligned} \tilde{\mathbf {n}}^{}_{A_{t}}=\mathbf {n}^{tr}_{A_{t}}, \quad \text {and}\quad \left[ \tilde{\lambda }_{{A}_{t}}^{{e}^{{}^{}}}\right] ^2=e^{\left( -2\Delta \gamma _{t}\frac{\partial \hat{\Phi }}{\partial \beta _A}(\beta _A,q)\right) }\left[ \lambda _{{A}_{t}}^{{e}^{{}^{tr}}}\right] ^2. \end{aligned}$$
(B.5)
Now, principal logarithmic stretches are defined as
$$\begin{aligned} \varepsilon ^{{e}^{tr}}_{{A}_{t}}:=\log \left( \lambda _{{A}_{t}}^{{e}^{{tr}^{}}}\right) , \quad \text {and}\quad \tilde{\varepsilon }^{{e}^{}}_{{A}_{t}}:=\log \left( \tilde{\lambda }_{{A}_{t}}^{{e}^{{}^{}}}\right) . \end{aligned}$$
(B.6)
Taking the logarithm on both sides of Eq. (B.5), the multiplicative update transforms into an additive update. Initializing \(\tilde{\varvec{\varepsilon }}^{{e}^{}}_{{t}_{}}=\left[ \tilde{\varepsilon }^{{e}^{}}_{{1}_{t}}, \tilde{\varepsilon }^{{e}^{}}_{{2}_{t}}, \tilde{\varepsilon }^{{e}^{}}_{{3}_{t}}\right] ^{T}\) and \(\varvec{\varepsilon }^{{e}^{tr}}_{{t}_{}}=\left[ \varepsilon ^{{e}^{tr}}_{{1}_{t}}, \varepsilon ^{{e}^{tr}}_{{2}_{t}}, \varepsilon ^{{e}^{tr}}_{{3}_{t}}\right] ^{T}\) one obtains
$$\begin{aligned}&\tilde{\xi }_{t}=\xi _{n}+\Delta \gamma _{t}\frac{\partial \hat{\Phi }}{\partial q}(\beta _A,q) \end{aligned}$$
(B.7)
$$\begin{aligned}&\tilde{\varepsilon }^{{e}^{}}_{{t}_{A}}=-\Delta \gamma _{t}\frac{\partial \hat{\Phi }}{\partial \beta _A}(\beta _A,q)+\varepsilon ^{{e}^{tr}}_{{t}_{A}} \end{aligned}$$
(B.8)
$$\begin{aligned}&\hbox {KKT:}\quad \Delta \gamma _{t}\ge 0,\quad \hat{\Phi }(\beta _A,q)\le 0,\quad \Delta \gamma _{t}\hat{\Phi }(\beta _A,q)=0 \nonumber \\ \end{aligned}$$
(B.9)
Appendix B.2. J2-Plasticity
J2-plasticity is formulated in terms of the second invariant of the deviatoric stress tensor. Here, the free energy density is assumed quadratic in the principal logarithmic stretches and takes the form:
$$\begin{aligned} \hat{\Psi }(\varepsilon _A^e,\xi )= & {} \frac{1}{2}\lambda \left[ \varepsilon _1^e+\varepsilon _2^e+\varepsilon ^e_3\right] ^2+\mu \left[ \left[ \varepsilon _1^{e}\right] ^2+\left[ \varepsilon _2^{e}\right] ^2+\left[ \varepsilon ^{e}_3\right] ^2\right] \nonumber \\&+\mathcal {H}(\xi ), \end{aligned}$$
(B.10)
where \(\lambda \) and \(\mu \) denote the Lamé Parameters. Thus, the stored energy density takes the form
$$\begin{aligned} \hat{\psi }(\varepsilon _A^e)=\frac{1}{2}\lambda \left[ \varepsilon _1^e+\varepsilon _2^e+\varepsilon ^e_3\right] ^2+\mu \left[ \left[ \varepsilon _1^{e}\right] ^2+\left[ \varepsilon _2^{e}\right] ^2+\left[ \varepsilon ^{e}_3\right] ^2\right] . \end{aligned}$$
(B.11)
Here, the hardening contribution is a quadratic function \(\displaystyle {\mathcal {H}(\xi )=\frac{1}{2}H\xi ^2}\), with the hardening parameter H. The yield criterion is defined in terms of principal stresses:
$$\begin{aligned} \hat{\Phi }(\varvec{\beta },q)=\left\| \overline{\varvec{\beta }} \right\| - \sqrt{\frac{2}{3}}\left[ \sigma _y-q\right] \le 0, \end{aligned}$$
(B.12)
where \(\varvec{\beta }=\left[ \beta _1,\beta _2,\beta _3\right] \) and \(\displaystyle { \overline{\varvec{\beta }}=\varvec{\beta }-\frac{1}{3}\left[ \varvec{\beta }\cdot \mathbf {1}\right] \mathbf {1}}\) denotes the deviatoric principal stress. Here, \(\mathbf {1}=\left[ 1, 1, 1\right] ^T\). The yield stress is denoted by \(\sigma _y\), where \(\sigma _y>0\). Further, the stress-strain relation in principal axes associated with the above constitutive model (see Eq. (B.10)) takes the form [27]:
$$\begin{aligned} \varvec{\beta }=\mathbf {a}\varvec{\varepsilon }^{{e}^{}}_{{}_{}}, \end{aligned}$$
(B.13)
where the constant elastic modulus \(\mathbf {a}\) in principal stretches is
$$\begin{aligned} \mathbf {a}=\kappa \mathbf {1}\otimes \mathbf {1}+2\mu \left[ \mathbf {I}-\frac{1}{3}\mathbf {1}\otimes \mathbf {1}\right] . \end{aligned}$$
(B.14)
Here, \(\mathbf {I}\) denotes the unit tensor and \(\displaystyle {\kappa =\lambda +\frac{2}{3}\mu }\).
In the typical interval \(t\in \left[ t_n, t_{n+1}\right] \) the state variables \(\xi _n\) and \(\mathbf {b}_{n}^{{e}^{}}\) are known. Here, let \(t=t_{n+1}\). The size of the step is denoted by \(\Delta t_{n+1}=t_{n+1}-t_n\). The return mapping algorithm in principal stresses is obtained by multiplying the principal stretches in Eq. (B.8) with the stiffness \(\mathbf {a}\) and is summarised as follows
$$\begin{aligned}&\xi _{n+1}=\xi _{n}+\sqrt{\frac{2}{3}}\Delta \gamma _{n+1} \end{aligned}$$
(B.15)
$$\begin{aligned}&\varvec{\beta }_{n+1}=\varvec{\beta }_{n+1}^{tr}-2\mu \overline{\varvec{\nu }}^{}{}_{n+1}\Delta \gamma _{n+1} \end{aligned}$$
(B.16)
$$\begin{aligned}&\varvec{\varepsilon }^{{e}^{}}_{{n+1}_{}}=\varvec{\varepsilon }^{{e}^{tr}}_{{n+1}_{}}-\overline{\varvec{\nu }}^{}{}_{n+1}\Delta \gamma _{n+1} \end{aligned}$$
(B.17)
$$\begin{aligned}&\hbox {KKT:}\quad \Delta \gamma _{n+1}\ge 0,\quad \hat{\Phi }(\varvec{\beta }_{n+1},q_{n+1})\le 0,\nonumber \\&\Delta \gamma _{n+1}\hat{\Phi }(\varvec{\beta }_{n+1},q_{n+1})=0, \end{aligned}$$
(B.18)
where
$$\begin{aligned} \varvec{\beta }_{n+1}^{tr}=\mathbf {a}\varvec{\varepsilon }^{{e}^{tr}}_{{n+1}_{}} \end{aligned}$$
(B.19)
Implicit to above equations are the relations \({\frac{\partial \hat{\Phi }}{\partial q}(\varvec{\beta },q)=\sqrt{\frac{2}{3}}}\) and \({\frac{\partial \hat{\Phi }}{\partial \varvec{\beta }}(\varvec{\beta },q)=\overline{\varvec{\nu }}^{}=\frac{\overline{\varvec{\beta }}}{\Vert \overline{\varvec{\beta }}\Vert }}\). It remains to evaluate \(\Delta \gamma _{n+1}\). For plastic loading, \(\Delta \gamma _{n+1}\ne 0\), thus \(\hat{\Phi }(\varvec{\beta }_{n+1},q_{n+1})\doteq 0\). This condition results in the following equation
$$\begin{aligned}&\Phi _{n+1}=\Phi ^{tr}-2\mu \Delta \gamma _{n+1}\nonumber \\&\quad -\sqrt{\frac{2}{3}}\left[ \frac{\partial \mathcal {H}}{\partial \xi }\left( \xi _n+\sqrt{\frac{2}{3}}\Delta \gamma _{n+1}\right) -\frac{\partial \mathcal {H}}{\partial \xi }\left( \xi _n\right) \right] \doteq 0. \nonumber \\ \end{aligned}$$
(B.20)
Equation (B.20) is solved for \(\Delta \gamma _{n+1}\) via an iterative Newton-Raphson solver. However, for the special case of linear hardening as introduced above, one can solve for \(\Delta \gamma _{n+1}\) in closed form.
Appendix B.3. Algorithmic elastoplastic tangent moduli
The algorithmic elastoplastic tangent modulus relates changes in the stress to changes in the total strain and is needed in finite-element simulations to set up the tangent stiffness matrix. Furthermore, it is indispensable for the calculation of the rod’s stiffness. Here, the algorithmic elastoplastic tangent modulus is defined as:
$$\begin{aligned} \mathbb {A}^{ep}=\frac{\partial \mathbf {P}_{}}{\partial \mathbf {F}_{}^{{}^{}}}=\frac{\partial \left( \mathbf {F}_{}^{{}^{}}\mathbf {S}_{}\right) }{\partial \mathbf {F}_{}^{{}^{}}}=\frac{\partial \mathbf {F}_{}^{{}^{}}}{\partial \mathbf {F}_{}^{{}^{}}}\mathbf {S}_{}+\mathbf {F}_{}^{{}^{}}\left[ \frac{\partial \mathbf {S}_{}}{\partial \mathbf {C}_{}^{{}^{}}}:\frac{\partial \mathbf {C}_{}^{{}^{}}}{\partial \mathbf {F}_{}^{{}^{}}}\right] . \end{aligned}$$
(B.21)
The computation of \(\displaystyle {\frac{\partial \mathbf {F}_{}^{{}^{}}}{\partial \mathbf {F}_{}^{{}^{}}}}\) and \(\displaystyle {\frac{\partial \mathbf {C}_{}^{{}^{}}}{\partial \mathbf {F}_{}^{{}^{}}}}\) is straightforward. Thus, the focus is on the computation of \(\displaystyle {\frac{\partial \mathbf {S}_{}}{\partial \mathbf {C}_{}^{{}^{}}}}\), which is denoted as the fourth order material tangent moduli \(\mathbb {C}_{}\). First, the Piola-Kirchoff stress is defined as the contra-variant pull back of the Kirchhoff stress \(\varvec{\tau }\)
$$\begin{aligned} \mathbf {S}_{}=\mathbf {F}_{}^{{-1}^{}}\varvec{\tau }_{}\mathbf {F}_{}^{{-T}^{}}=\sum _{A=1}^3\beta _{A_{}}\mathbf {F}_{}^{{-1}^{}}\left[ \mathbf {n}_{A_{}}\otimes \mathbf {n}_{A_{}}\right] \mathbf {F}_{}^{{-T}^{}}. \end{aligned}$$
(B.22)
Using the fact that \(\mathbf {n}^{tr}_{A_{}}=\mathbf {n}_{A_{}}\), the above equation is rewritten as
$$\begin{aligned} \mathbf {S}_{}=\sum _{A=1}^3\beta _{A_{}}\mathbf {M}_{A_{}}^{tr} \end{aligned}$$
(B.23)
with \(\mathbf {M}^{tr}_{A_{}}=\mathbf {F}_{}^{{-1}^{}}\left[ \mathbf {n}^{tr}_{A_{}}\otimes \mathbf {n}^{tr}_{A_{}}\right] \mathbf {F}_{}^{{-T}^{}}\). The derivative of Eq. (B.23) with respect to \(\mathbf {C}_{}^{{}^{}}\) yields
$$\begin{aligned} \frac{\partial \mathbf {S}_{}}{\partial \mathbf {C}_{}^{{}^{}}}=\sum _{A=1}^3\sum _{B=1}^3\frac{\partial \beta _{A_{}}}{\partial \varepsilon _{B_{}}}\mathbf {M}^{tr}_{A_{}}\otimes \frac{\partial \varepsilon _{B_{}}}{\partial \mathbf {C}_{}^{{}^{}}}+\sum _{A=1}^3 \beta _{A_{}}\frac{\partial \mathbf {M}^{tr}_{A_{}}}{\partial \mathbf {C}_{}^{{}^{}}}. \end{aligned}$$
(B.24)
Here, \(\displaystyle {\frac{\partial \beta _{A_{}}}{\partial \varepsilon _{B_{}}}}\) is the scalar component of a \(3\times 3\) matrix, the algorithmic elastoplastic moduli \(\mathbf {a}_{}^{ep}\). The result for \(\displaystyle {\frac{\partial \varepsilon _{B}}{\partial \mathbf {C}_{}^{{}^{}}}}\) is derived in [27] and reads as
$$\begin{aligned} \frac{\partial \varepsilon _{B_{}}}{\partial \mathbf {C}_{}^{{}^{}}}=\frac{1}{2}\mathbf {M}^{tr}_{B_{}}. \end{aligned}$$
(B.25)
The derivative in the second sum is the pull back of its spatial counter part \(\mathbb {c}\) derived in [27]
$$\begin{aligned} \frac{\partial M^{tr}_{A_{IJ}}}{\partial C_{KL}}=c_{ijkl}F^{-1}_{iI}F^{-1}_{jJ}F^{-1}_{kK}F^{-1}_{lL}. \end{aligned}$$
(B.26)
Inserting the terms, Eq. (B.24) is rewritten as
$$\begin{aligned} \frac{\partial \mathbf {S}_{}}{\partial \mathbf {C}_{}^{{}^{}}}=\sum _{A=1}^3\sum _{B=1}^3 \frac{1}{2}\text {a}^{ep}_{AB}\mathbf {M}^{tr}_{A_{}}\otimes \mathbf {M}^{tr}_{B_{}}+\sum _{A=1}^3 \beta _{A_{}}\frac{\partial \mathbf {M}^{tr}_{A_{}}}{\partial \mathbf {C}_{}^{{}^{}}}. \end{aligned}$$
(B.27)
The derivation of \(\mathbf {a}^{ep}\) is given in [27] and is summarised as
$$\begin{aligned} \mathbf {a}_{}^{ep}= & {} \mathbf {a}-2\mu \left[ \frac{2\mu \Delta \gamma }{\Vert \overline{\varvec{\beta }}^{}\Vert }\left[ \mathbf {I}-\frac{1}{3}\mathbf {1}\otimes \mathbf {1}\right] \right. \nonumber \\&\qquad \qquad \left. +\left[ \frac{2\mu }{2\mu +\frac{2}{3}H}-\frac{2\mu \Delta \gamma }{\Vert \overline{\varvec{\beta }}^{}\Vert }\right] \overline{\varvec{\nu }}^{}{}\otimes \overline{\varvec{\nu }}^{}{}\right] . \end{aligned}$$
(B.28)
Implicit to the above equation is:
$$\begin{aligned} \mathbf {a}_{}^{ep}=\frac{\partial }{\partial \varvec{\varepsilon }^{{}^{}}_{{}_{}}}\left( \mathbf {a}\varvec{\varepsilon }^{{e}^{tr}}_{{}_{}}-2\mu \overline{\varvec{\nu }}^{}{}\Delta \gamma \right) . \end{aligned}$$
(B.29)
Obviously, for the case of elasticity \(\Delta \gamma =0\) and \(\mathbf {a}_{}^{ep}=\mathbf {a}\).
Appendix C. Stress resultants and stiffnesses for shearing and twisting
Figures 13 and 14 display transversal force and twisting moment as well as their corresponding stiffnesses as a function of shear and twist, respectively. Their course is similar to the case of bending discussed in Sect. 3.3.