Skip to main content
Log in

A nonlocal damage model for concrete with three length scales

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the presented work, a nonlocal gradient enhanced damage model for concrete is proposed with a stress decomposition, to account for shear induced damage. The nonlocal model is an extension of the recently proposed local plasticity damage model by the authors, which can handle directional dependency of damage, pure shear and biaxial damage, damage activation/deactivation and microcracks opening/closure. The gradient enhanced approach is utilized for the extension of the local model. Due to the distinct behavior of concrete in tension, compression and shear, three length scales (tension, compression and shear) are incorporated, depending on local damage variables. The model is implemented in Abaqus UEL-UMAT subroutine with eight node quadrilateral user defined element, having five degrees of freedom \( \left( {{\text{u}}_{x} ,{\text{u}}_{y} ,\underline{\text{eq}}^{ + } ,\underline{\text{eq}}^{ - } ,\underline{\text{eq}}^{s} } \right) \) at corner nodes and two degrees of freedom at internal nodes \( \left( {{\text{u}}_{x} ,{\text{u}}_{y} } \right) \). Five examples of mixed crack mode and mode-I cracking are modeled to show the performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Abu Al-Rub RK, Voyiadjis GZ (2009) Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: computational aspects and applications. Int J Damage Mech 18(2):115–154. https://doi.org/10.1177/1056789508097541

    Article  Google Scholar 

  2. Ahmed B, Voyiadjis GZ, Park T (2019) Damaged plasticity model for concrete using scalar damage variables with a novel stress decomposition. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2019.11.023

    Article  Google Scholar 

  3. Arrea MaI AR (1982) Mixed-mode Crack Propogation in Mortar and Concrete. Report No 81-31, Department of Structural Engineering, Cornell University, Ithaca, NY

  4. Azinpour E, Ferreira JPS, Parente MPL, de Sa JC (2018) A simple and unified implementation of phase field and gradient damage models. Adv Model Simul Eng Sci 5(1):15. https://doi.org/10.1186/s40323-018-0106-7

    Article  Google Scholar 

  5. Bažant ZP, Gettu R, Kazemi MT (1991) Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int J Rock Mech Min Sci Geomech Abstr 28(1):43–51. https://doi.org/10.1016/0148-9062(91)93232-U

    Article  Google Scholar 

  6. Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115(4):755–767. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(755)

    Article  Google Scholar 

  7. Borino G, Failla B, Parrinello F (2003) A symmetric nonlocal damage theory. Int J Solids Struct 40(13):3621–3645. https://doi.org/10.1016/S0020-7683(03)00144-6

    Article  MATH  Google Scholar 

  8. Cervera M, Tesei C (2017) An energy-equivalent d+/d(-) damage model with enhanced microcrack closure-reopening capabilities for cohesive-frictional materials, vol 10. https://doi.org/10.3390/ma10040433

  9. Cervera M, Tesei C (2017) An energy-equivalent d+/d(–) damage model with enhanced microcrack closure-reopening capabilities for cohesive-frictional materials. Mater (Basel) 10(4):433. https://doi.org/10.3390/ma10040433

    Article  Google Scholar 

  10. Cervera M, Tesei C, Ventura G (2018) Cracking of quasi-brittle structures under monotonic and cyclic loadings: a d+/d– damage model with stiffness recovery in shear. Int J Solids Struct 135:148–171. https://doi.org/10.1016/j.ijsolstr.2017.11.017

    Article  Google Scholar 

  11. Cicekli U, Voyiadjis GZ, Abu Al-Rub RK (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10):1874–1900. https://doi.org/10.1016/j.ijplas.2007.03.006

    Article  MATH  Google Scholar 

  12. Comi C (2001) A non-local model with tension and compression damage mechanisms. Eur J Mech A Solids 20(1):1–22. https://doi.org/10.1016/S0997-7538(00)01111-6

    Article  MATH  Google Scholar 

  13. Comi C, Perego U (2001) Numerical aspects of nonlocal damage analyses. Revue Européenne des Éléments Finis 10(2–4):227–242. https://doi.org/10.1080/12506559.2001.11869249

    Article  MATH  Google Scholar 

  14. Desmorat R, Gatuingt F, Ragueneau F (2007) Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Eng Fract Mech 74(10):1539–1560. https://doi.org/10.1016/j.engfracmech.2006.09.012

    Article  Google Scholar 

  15. Faria R, Oliver J, Cervera M (2000) On isotropic scalar damage models for the numerical analysis of concrete structures on isotropic scalar damage models for the numerical analysis of concrete structures. https://doi.org/10.13140/RG.2.2.15934.59208

  16. Gao Z, Zhang L, Yu W (2018) A nonlocal continuum damage model for brittle fracture. Eng Fract Mech 189:481–500. https://doi.org/10.1016/j.engfracmech.2017.10.019

    Article  Google Scholar 

  17. Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ (1998) Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160(1):133–153. https://doi.org/10.1016/S0045-7825(98)80011-X

    Article  MATH  Google Scholar 

  18. Geers MGD, de Borst R, Peerlings RHJ (2000) Damage and crack modeling in single-edge and double-edge notched concrete beams. Eng Fract Mech 65(2):247–261. https://doi.org/10.1016/S0013-7944(99)00118-6

    Article  Google Scholar 

  19. Giry C, Dufour F, Mazars J (2011) Stress-based nonlocal damage model. Int J Solids Struct 48(25):3431–3443. https://doi.org/10.1016/j.ijsolstr.2011.08.012

    Article  Google Scholar 

  20. Grassl P, Jirásek M (2006) Plastic model with non-local damage applied to concrete. Int J Numer Anal Meth Geomech 30(1):71–90. https://doi.org/10.1002/nag.479

    Article  MATH  Google Scholar 

  21. Grassl P, Xenos D, Nyström U, Rempling R, Gylltoft K (2013) CDPM2: a damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008

    Article  Google Scholar 

  22. Hien Poh L, Swaddiwudhipong S (2009) Over-nonlocal gradient enhanced plastic-damage model for concrete. Int J Solids Struct 46(25):4369–4378. https://doi.org/10.1016/j.ijsolstr.2009.08.025

    Article  MATH  Google Scholar 

  23. Kim J-HJ, Yi S-T, Kim J-K (2004) Size effect of concrete members applied with flexural compressive stresses. Int J Fract 126(1):79–102. https://doi.org/10.1023/B:frac.0000025300.66782.38

    Article  Google Scholar 

  24. Kolo I, Abu Al-Rub RK, Sousa RL (2016) Computational modelling of fracture propagation in rocks using a coupled elastic-plasticity-damage model. Math Probl Eng 2016:15. https://doi.org/10.1155/2016/3231092

    Article  MathSciNet  MATH  Google Scholar 

  25. Negi A, Kumar S (2019) Localizing gradient damage model with smoothed stress based anisotropic nonlocal interactions. Eng Fract Mech 214:21–39. https://doi.org/10.1016/j.engfracmech.2019.04.011

    Article  Google Scholar 

  26. Nguyen GD, Korsunsky AM (2008) Development of an approach to constitutive modelling of concrete: isotropic damage coupled with plasticity. Int J Solids Struct 45(20):5483–5501. https://doi.org/10.1016/j.ijsolstr.2008.05.029

    Article  MATH  Google Scholar 

  27. Nguyen THA, Bui TQ, Hirose S (2018) Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements. Comput Methods Appl Mech Eng 328:498–541. https://doi.org/10.1016/j.cma.2017.09.019

    Article  MathSciNet  MATH  Google Scholar 

  28. Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4(1):67–93. https://doi.org/10.1016/0167-6636(85)90007-9

    Article  Google Scholar 

  29. Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39(19):3391–3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19%3c3391:AID-NME7%3e3.0.CO;2-D

    Article  MATH  Google Scholar 

  30. Poh LH, Sun G (2017) Localizing gradient damage model with decreasing interactions. Int J Numer Meth Eng 110(6):503–522. https://doi.org/10.1002/nme.5364

    Article  MathSciNet  Google Scholar 

  31. Resende L (1987) A Damage mechanics constitutive theory for the inelastic behaviour of concrete. Comput Methods Appl Mech Eng 60(1):57–93. https://doi.org/10.1016/0045-7825(87)90130-7

    Article  MATH  Google Scholar 

  32. Sarkar S, Singh IV, Mishra BK, Shedbale AS, Poh LH (2019) A comparative study and ABAQUS implementation of conventional and localizing gradient enhanced damage models. Finite Elem Anal Des 160:1–31. https://doi.org/10.1016/j.finel.2019.04.001

    Article  Google Scholar 

  33. Saroukhani S, Vafadari R, Simone A (2013) A simplified implementation of a gradient-enhanced damage model with transient length scale effects. Comput Mech 51(6):899–909. https://doi.org/10.1007/s00466-012-0769-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Schreter M, Neuner M, Hofstetter G (2018) Evaluation of the implicit gradient-enhanced regularization of a damage-plasticity rock model. Appl Sci 8(6):1004

    Article  Google Scholar 

  35. Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct 41(2):351–363. https://doi.org/10.1016/j.ijsolstr.2003.09.020

    Article  MATH  Google Scholar 

  36. Vandoren B, Simone A (2018) Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models. Comput Methods Appl Mech Eng 332:644–685. https://doi.org/10.1016/j.cma.2017.12.027

    Article  MathSciNet  MATH  Google Scholar 

  37. Voyiadjis GZ, Abed FH (2006) A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals. Int J Plast 22(8):1398–1431. https://doi.org/10.1016/j.ijplas.2005.10.005

    Article  MATH  Google Scholar 

  38. Voyiadjis GZ, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J Solids Struct 50(20):3136–3151. https://doi.org/10.1016/j.ijsolstr.2013.05.015

    Article  Google Scholar 

  39. Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton. Innsbruck University Press

  40. Wu J-Y, Cervera M (2018) A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids. Int J Solids Struct 139–140:250–269. https://doi.org/10.1016/j.ijsolstr.2018.02.004

    Article  Google Scholar 

  41. Wu J-Y, Xu S-L (2013) Reconsideration on the elastic damage/degradation theory for the modeling of microcrack closure-reopening (MCR) effects. Int J Solids Struct 50(5):795–805. https://doi.org/10.1016/j.ijsolstr.2012.11.012

    Article  Google Scholar 

  42. Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3):583–612. https://doi.org/10.1016/j.ijsolstr.2005.05.038

    Article  MATH  Google Scholar 

  43. Zhang J, Li J, Ju JW (2016) 3D elastoplastic damage model for concrete based on novel decomposition of stress. Int J Solids Struct 94–95:125–137. https://doi.org/10.1016/j.ijsolstr.2016.04.038

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2018R1A2B6008477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehyo Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, B., Voyiadjis, G.Z. & Park, T. A nonlocal damage model for concrete with three length scales. Comput Mech 68, 461–486 (2021). https://doi.org/10.1007/s00466-020-01939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01939-6

Keywords

Navigation