Skip to main content
Log in

Fracture simulation of viscoelastic polymers by the phase-field method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The phase-field model has been employed for fracture analysis over the last decade. One of the main advantages is that the fracture evolution does not depend on any explicit criterion. Good agreement is obtained by comparing the results of simulations and experiments. Most elastomers exhibit both elastic and viscous behavior simultaneously, which yields rate-dependent properties for both the mechanical and fracture responses. In this contribution, a viscoelastic rheological model based on Reese and Govindjee (Int J Solids Struct 35:3455–3482, 1998) is coupled to phase-field modeling to investigate rate-dependent fracture within elastomers. The elastic strain energy potential supposed to evolve fracture is provided by both the equilibrium and non-equilibrium branches. The fracture mechanism is characterized by a volumetric–isochoric split, which specifies a varying driving force in the case of tensile or compressive deformation. Representative numerical examples are studied and related findings and potential perspectives are summarized to close the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sullivan JL (1986) The relaxation and deformational properties of a carbon-black filled elastomer in biaxial tension. J Appl Polym Sci 24:161–173

    Google Scholar 

  2. Miehe C, Keck J (2000) Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365

    MATH  Google Scholar 

  3. Christensen RM (1982) Theory of viscoelasticity. An introduction, 2nd edn. Academic Press, New York

    Google Scholar 

  4. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173

    MATH  Google Scholar 

  5. Govindjee S, Simo JC (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Int J Solids Struct 29:1737–1751

    MATH  Google Scholar 

  6. Govindjee S, Simo JC (1993) Coupled stress-diffusion: case II. J Mech Phys Solids 41:863–867

    MathSciNet  MATH  Google Scholar 

  7. Holzapfel GA (1996) On large strain viscoelasticity: continuum fonnulalion and finite element applications to elastomeric structures. Int J Numer Methods Eng 39:3903–3926

    MATH  Google Scholar 

  8. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239

    MATH  Google Scholar 

  9. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  10. Bergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46:931–954

    MATH  Google Scholar 

  11. Dal H, Kaliske M (2009) Bergström–Boyce model for nonlinear finite rubber viscoelasticity: theoretical aspects and algorithmic treatment for the FE method. Comput Mech 44:809–823

    MathSciNet  MATH  Google Scholar 

  12. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. J Appl Mech ASME 98:41–104

    MATH  Google Scholar 

  13. Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61–112

    MathSciNet  MATH  Google Scholar 

  14. Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    MATH  Google Scholar 

  15. Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99

    Google Scholar 

  16. Gent AN, Lindley PB (1959) Internal rupture of bonded rubber cylinders in tension. Proc R Soc A 249:195–205

    Google Scholar 

  17. Gent AN, Park B (1984) Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci 19:1947–1956

    Google Scholar 

  18. Ball JM (1982) Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc Lond A 306:557–610

    MathSciNet  MATH  Google Scholar 

  19. Poulain X, Lefévre V, Lopez-Pamies O, Ravi-Chandar K (2017) Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-cracks. Int J Fract 205:1–21

    Google Scholar 

  20. Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Google Scholar 

  21. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Google Scholar 

  22. Bahrt Madsen F, Yu L, Ladegaard Skov A (2016) Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett 5:1196–1200

    Google Scholar 

  23. Knauss WG (2015) A review of fracture in viscoelastic materials. Int J Fract 196:99–146

    Google Scholar 

  24. Gol’Dstein R, Salganik R (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10:507–523

    Google Scholar 

  25. Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464:85–89

    Google Scholar 

  26. Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res Solid Earth 101:3387–3400

    Google Scholar 

  27. Amestoy M, Leblond J (1992) Crack paths in plane situations-II. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29:465–501

    MathSciNet  MATH  Google Scholar 

  28. Lazarus V, Buchholz FG, Fulland M (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153:141–151

    Google Scholar 

  29. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Google Scholar 

  30. Hocine NA, Abdelaziz MN, Mesmacque G (1998) Experimental and numerical investigation on single specimen methods of determination of J in rubber materials. Int J Fract 94:321–338

    Google Scholar 

  31. Hocine NA, Abdelaziz MN, Imad A (2002) Fracture problems of rubbers: J-integral estimation based upon \(\eta \) factors and an investigation on the strain energy density distribution as a local criterion. Int J Fract 117:1–23

    Google Scholar 

  32. Schapery RA (1984) Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. Int J Fract 25:195–223

    Google Scholar 

  33. Kroon M (2011) Steady-state crack growth in rubber-like solids. Int J Fract 169:49–60

    MATH  Google Scholar 

  34. Kroon M (2014) Energy release rates in rubber during dynamic crack propagation. Int J Solids Struct 51:4419–4426

    Google Scholar 

  35. Özenç K (2016) Approaches to model failure of materials by configurational mechanics: theory and numerics. Ph.D. thesis, Technische Universität Dresden

  36. Geissler G, Kaliske M, Nase M, Grellmann W (2007) Peel process simulation of sealed polymeric film computational modelling of experimental results. Int J Comput Aided Eng Softw 24:586–607

    Google Scholar 

  37. Zreid I, Fleischhauer R, Kaliske M (2010) A thermomechanically coupled viscoelastic cohesive zone model at large deformation. Int J Solids Struct 50:4279–4291

    Google Scholar 

  38. Duddu R, Waisman H (2012) A temperature dependent creep damage model for polycrystalline ice. Mech Mater 46:23–41

    Google Scholar 

  39. Duddu R, Waisman H (2013) A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput Mech 51:961–974

    MATH  Google Scholar 

  40. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Google Scholar 

  41. Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    MATH  Google Scholar 

  42. Kienzler R, Herrmann G (2000) Mechanics in material space: with applications to defect and fracture mechanics. Springer, Berlin

    MATH  Google Scholar 

  43. Braun M (1997) Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci Phys Math 35:379–386

    MATH  Google Scholar 

  44. Müller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    MathSciNet  MATH  Google Scholar 

  45. Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48:213–245

    Google Scholar 

  46. Maugin GA (2010) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press, Boca Raton

    MATH  Google Scholar 

  47. Foulk JW, Allen DH, Helms KLE (2000) Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng 183:51–66

    MATH  Google Scholar 

  48. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    MathSciNet  MATH  Google Scholar 

  49. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    MathSciNet  MATH  Google Scholar 

  50. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    MATH  Google Scholar 

  51. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    MathSciNet  MATH  Google Scholar 

  52. Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via convergence. Commun Pure Appl Math 43:999–1036

    MathSciNet  MATH  Google Scholar 

  53. Dal Maso G (1993) An introduction to \(\varGamma \)-convergence. Birkhäuser, Boston

    Google Scholar 

  54. Braides DP (1998) Approximation of free discontinuity problems. Springer, Berlin

    MATH  Google Scholar 

  55. Braides A (2002) Gamma-convergence for beginners. Oxford University Press, Oxford

    MATH  Google Scholar 

  56. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    MathSciNet  MATH  Google Scholar 

  57. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    MATH  Google Scholar 

  58. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    MathSciNet  MATH  Google Scholar 

  59. Steinke C, Kaliske M (2019) A phase-field crack approximation approach based on directional stress decomposition. Comput Mech 63:1019–1046

    MathSciNet  MATH  Google Scholar 

  60. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    MathSciNet  MATH  Google Scholar 

  61. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Google Scholar 

  62. Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Matériaux et Constructions 24:425–450

    Google Scholar 

  63. Fineberg J, Gross SP, Marder M, Swinney H (1992) Instability in the propagation of fast cracks. Am Phys Soc 45:5146–5154

    Google Scholar 

  64. Yin B, Steinke C, Kaliske M. Formulation and implementation of strain rate dependent fracture toughness in context of the phase-field method. Int J Numer Methods Eng. https://doi.org/10.1002/nme.6207

    Google Scholar 

  65. Shen R, Waisman H, Guo L (2019) Fracture of viscoelastic solids modeled with a modified phase field. Comput Methods Appl Mech Eng 346:862–890

    MathSciNet  Google Scholar 

  66. Schänzel LM (2015) Phase field modeling of fracture in rubbery and glassy polymers at finite thermo-viscoelastic deformations. Ph.D. thesis, Stuttgart Universität

  67. Loew PJ, Peters B, Beex LAA (2019) Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification. J Mech Phys Solids 127:266–294

    MathSciNet  Google Scholar 

  68. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  69. Miehe C (1998) A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int J Solids Struct 35:3859–3897

    MATH  Google Scholar 

  70. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202

    MATH  Google Scholar 

  71. Pham K, Amor H, Marigo JJ, Corrado M (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20:618–652

    Google Scholar 

  72. Hofacker M (2013) A thermodynamically consistent phase field approach to fracture. Ph.D. thesis, Universität Stuttgart

  73. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Google Scholar 

  74. Borden MJ (2012) Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture. Ph.D thesis, The University of Texas at Austin

  75. Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113

    MathSciNet  MATH  Google Scholar 

  76. Kuhn C (2013) Numerical and analytical investigation of a phase field model for fracture. Ph.D. thesis, Technischen Universität Kaiserslautern

  77. Ozelo RRM, Sollero P, Costa ALA (2012) An alternative technique to evaluate crack propagation path in hyperelastic materials. Tire Sci Technol 40:42–58

    Google Scholar 

  78. Özenç K, Kaliske M (2014) An implicit algorithm to assess the failure mechanism of elastomeric continua. Int J Numer Methods Eng 100:669–688

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of ANSYS Inc., Canonsburg, as well as the technical support of the Centre for Information Services and High Performance Computing of TU Dresden for providing access to the Bull HPC-Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of the tangent \({\mathscr {K}}_{ab}\) for the local Newton iteration

By linearization of Eq. (19), the local tangent \({\mathscr {K}}_{ab}\) is derived as

$$\begin{aligned} {\mathscr {K}}_{ab}= & {} -\delta _{\varepsilon _{b}^{e}}\,{\mathscr {R}}_{a}\nonumber \\= & {} -\left( \delta _{ab} + \eta _{0}\,\varDelta t\cdot \,\delta _{{\bar{\tau }}_{c}^{ne}}\,\text {dev} \left( {\bar{\tau }}_{a}^{ne}\right) \cdot \delta _{\varepsilon _{b}^{e}}{\bar{\tau }}_{c}^{ne} \right) , \end{aligned}$$
(37)

where \({\bar{\tau }}_{a}^{ne}\) is obtained by \({\bar{\tau }}_{a}^{ne}=2\,\delta _{{\bar{I}}_{1}^{e}} {\bar{\varPhi }}^{ne}\cdot {\bar{\lambda }}_{a}^{e^{2}}\). In order to achieve further simplifications, defining \({\mathscr {T}}_{ab}\) as

$$\begin{aligned} {\mathscr {T}}_{ab}=\delta _{\varepsilon _{b}^{e}}{\bar{\tau }}_{a}^{ne} =4\,\delta _{{\bar{I}}_{1}^{e}}{\bar{\varPhi }}^{ne} \cdot {\bar{\lambda }}_{a}^{e}\,{\bar{\lambda }}_{b}^{e}\,\delta _{ab} +4\delta ^{2}_{{\bar{I}}_{1}^{e}}{\bar{\varPhi }}^{ne}\cdot \, {\bar{\lambda }}_{a}^{e^{2}}{\bar{\lambda }}_{b}^{e^{2}}\nonumber \\ \end{aligned}$$
(38)

and employing the operator \(\bar{{\mathscr {T}}}_{ab}={\mathscr {T}}_{ab}-\frac{1}{3}\sum ^{3}_{c=1} {\mathscr {T}}_{cb}\), the local stiffness \({\mathscr {K}}_{ab}\) in Eq. (37) consequently yields

$$\begin{aligned} {\mathscr {K}}_{ab}=-\left( \delta _{ab} + \eta _{0}\,\varDelta t\, \bar{{\mathscr {T}}}_{ab}\right) . \end{aligned}$$
(39)

Thus, the framework in Table. 1 can be conducted.

Appendix B: Derivation of the consistent Eulerian tangent

Knowing the Kirchhoff stresses in Sect. 2.1, the consistent Eulerian tangent moduli are derived. The volumetric tangent is obtained straightforwardly as

$$\begin{aligned} {\mathbb {C}}_{vol}=\left( J\,p+J^{2}\,s\right) {\mathbf {1}}\otimes {\mathbf {1}}-2Jp\,{\mathbb {I}}, \end{aligned}$$
(40)

where \(s=U''\left( J \right) \). The fourth order identity tensor is defined by \({\mathbb {I}}_{abcd}=\frac{1}{2}\left( \delta _{ac}\delta _{bd}+\delta _{ad}\delta _{bc}\right) \). The isochoric tangents are

$$\begin{aligned} {\mathbb {C}}_{iso}^{eq}= & {} {\mathbb {P}}:\bar{{\mathbb {C}}}_{iso}^{eq}: {\mathbb {P}}\nonumber \\&+\frac{2}{3} \Big ( \left( \bar{\varvec{\tau }}^{eq} :{\mathbf {1}}\right) {\mathbb {P}}- \varvec{\tau }^{eq}_{iso} \otimes {\mathbf {1}} - {\mathbf {1}}\otimes \varvec{\tau }^{eq}_{iso} \Big ) \end{aligned}$$
(41)

and

$$\begin{aligned} {\mathbb {C}}_{iso}^{ne}= & {} {\mathbb {P}}:\bar{{\mathbb {C}}}_{iso}^{ne}: {\mathbb {P}}\nonumber \\&+\frac{2}{3} \Big ( \left( \bar{\varvec{\tau }}^{ne} :{\mathbf {1}}\right) {\mathbb {P}}- \varvec{\tau }^{ne}_{iso} \otimes {\mathbf {1}} - {\mathbf {1}}\otimes \varvec{\tau }^{ne}_{iso} \Big ), \end{aligned}$$
(42)

respectively. The terms \(\varvec{\tau }^{eq}_{iso}\), \(\bar{\varvec{\tau }}^{eq}\), \(\varvec{\tau }^{ne}_{iso}\) and \(\bar{\varvec{\tau }}^{ne}\) are already outlined in Eqs. (6) and (7). The isochoric tangent for the equilibrium branch in Eq. (41) is

$$\begin{aligned} \bar{{\mathbb {C}}}_{iso}^{eq}=4\, \bar{{\mathbf {b}}}\cdot \delta ^{2}_{\bar{{\mathbf {b}}}} {\bar{\varPhi }}_{iso}^{eq}\cdot \bar{{\mathbf {b}}} \end{aligned}$$
(43)

according to [68]. Nevertheless, a closed form of \(\bar{{\mathbb {C}}}_{iso}^{ne}\) in Eq. (42) cannot be derived straightforwardly, see [11] and [14]. Regarding the inelastic response, a fictitious intermediate configuration is assumed between the initial and current configuration, where the eigenvectors are denoted by \(\tilde{{\mathbf {N}}}^{a}\) with \(a=1,2,3\). The trial deformation tensor \(\bar{{\mathbf {F}}}_{e}^{tr}\) describes the kinetic relations from the fictitious intermediate configuration to the current configuration, which reads

$$\begin{aligned} \bar{{\mathbf {F}}}_{e}^{tr}=\sum _{a=1}^{3}{\bar{\lambda }}_{a}^{e,tr} {\varvec{n}}^{a}\otimes \tilde{{\mathbf {N}}}^{a}. \end{aligned}$$
(44)

Hence, the second Piola-Kirchhoff stress tensor \(\bar{{\mathbf {S}}}_{iso}^{ne}\) is obtained by a pull back operation as

$$\begin{aligned} \bar{{\mathbf {S}}}_{iso}^{ne}=\bar{{\mathbf {F}}}_{e}^{tr^{-1}}\, \bar{\varvec{\tau }}^{ne} \,\bar{{\mathbf {F}}}_{e}^{tr^{-T}}=\sum _{a=1}^{3}\frac{{\bar{\tau }}_{a}^ {ne}}{{\bar{\lambda }}_{a}^{e,tr^{2}}}\,\tilde{{\mathbf {N}}}_{a} \otimes \tilde{{\mathbf {N}}}_{a}. \end{aligned}$$
(45)

The consistent tangent modulus \(\tilde{{\mathbb {C}}}_{iso}^{ne}\) in the intermediate configuration is

$$\begin{aligned} \tilde{{\mathbb {C}}}_{iso}^{ne}= & {} 2\,\delta _{\bar{{\mathbf {C}}}_{e}^{tr}} \bar{{\mathbf {S}}}_{iso}^{ne} =\sum _{a=1}^{3}\sum _{b=1}^{3}\frac{\zeta _{ab}-2\, {\bar{\tau }}_{a}^{ne}\,\delta _{ab}}{{\bar{\lambda }}_{a}^{e,tr^{2}}\, {\bar{\lambda }}_{b}^{e,tr^{2}}}\tilde{{\mathbb {M}}}^{ab}\nonumber \\&+ \sum _{a=1}^{3}\sum _{b\ne a}^{3} \frac{{\bar{\tau }}_{a}^{ne}/{\bar{\lambda }}_{a}^{e,tr^{2}} -{\bar{\tau }}_{b}^{ne}/{\bar{\lambda }}_{b}^{e,tr^{2}}}{{\bar{\lambda }}_{a}^{e,tr^{2}}-{\bar{\lambda }}_{b}^{e,tr^{2}}} \tilde{{\mathbb {G}}}^{ab}, \end{aligned}$$
(46)

with the definitions

$$\begin{aligned}&\tilde{{\mathbb {M}}}^{ab} = \tilde{{\mathbf {N}}}^{a}\otimes \tilde{{\mathbf {N}}}^{a}\otimes \tilde{{\mathbf {N}}}^{b}\otimes \tilde{{\mathbf {N}}}^{b}\,\,\,\,\,\,\text {and}\nonumber \\&\tilde{{\mathbb {G}}}^{ab} = \tilde{{\mathbf {N}}}^{a}\otimes \tilde{{\mathbf {N}}}^{b}\otimes \left( \tilde{{\mathbf {N}}}^{a}\otimes \tilde{{\mathbf {N}}}^{b}+\tilde{{\mathbf {N}}}^{b}\otimes \tilde{{\mathbf {N}}}^{a} \right) . \end{aligned}$$
(47)

In Eq. (46), the quantity \({\bar{\tau }}_{a}^{ne}\) is illustrated in “Appendix A” and \(\zeta _{ab}\) is defined as

$$\begin{aligned} \zeta _{ab}=\delta _{\varepsilon _{b}^{e,tr}} {\bar{\tau }}_{a}^{ne}=\delta _{\varepsilon _{c}^{e}}{\bar{\tau }}_{a}^{ne} \cdot \delta _{\varepsilon _{b}^{e,tr}}\varepsilon _{c}^{e} ={\mathscr {T}}_{ac}\cdot \delta _{\varepsilon _{b}^{e,tr}}\varepsilon _{c}^{e}, \end{aligned}$$
(48)

where the term \(\delta _{\varepsilon _{b}^{e,tr}}\varepsilon _{c}^{e}\) is not directly computed. Due to the condition \(\delta _{\varepsilon _{b}^{e,tr}}r_{a}=0\), it holds

$$\begin{aligned} -\delta _{ab}-{\mathscr {K}}_{ac}\cdot \delta _{\varepsilon _{b}^{e,tr}} \varepsilon _{c}^{e}=0, \end{aligned}$$
(49)

which leads to \(\delta _{\varepsilon _{b}^{e,tr}}\varepsilon _{c}^{e}=-{\mathscr {K}}_{cb}^{-1}\). Thus, according to Eq. (48), the coefficient \(\zeta _{ab}=-{\mathscr {T}}_{ac}\,{\mathscr {K}}_{cb}^{-1}\) is obtained.

In case of singularity problems of Eq. (46), e.g. equal eigenvalues \({\bar{\lambda }}_{a} = {\bar{\lambda }}_{b}\), L’ Hospital’s rule is applied, which yields

$$\begin{aligned} \lim _{{\bar{\lambda }}_{b} \rightarrow {\bar{\lambda }}_{a}} \frac{{\bar{\tau }}_{a}^{ne}/{\bar{\lambda }}_{a}^{e,tr^{2}} -{\bar{\tau }}_{b}^{ne}/{\bar{\lambda }}_{b}^{e,tr^{2}}}{{\bar{\lambda }}_{a}^{e,tr^{2}}-{\bar{\lambda }}_{b}^{e,tr^{2}}} =\frac{1}{2}\frac{\zeta _{aa}-2\,{\bar{\tau }}_{a}^{ne}}{{\bar{\lambda }}_{a}^{e,tr^{4}}}. \end{aligned}$$
(50)

Consequently, the consistent tangent in current configuration is obtained by push-forward operation of \(\tilde{{\mathbb {C}}}_{iso}^{ne}\), reading

$$\begin{aligned} \bar{{\mathbb {C}}}_{iso_{ijkl}}^{ne}= \bar{{\mathbf {F}}}_{e_{iI}}^{tr}\,\bar{{\mathbf {F}}}_{e_{jJ}}^{tr} \,\bar{{\mathbf {F}}}_{e_{kK}}^{tr}\,\bar{{\mathbf {F}}}_{e_{lL}}^{tr} \,\tilde{{\mathbb {C}}}_{iso_{IJKL}}^{ne}. \end{aligned}$$
(51)

Appendix C: Numerical implementation at the element level

Based on the strong forms of Eqs. (34) and (35), the weak forms for both the mechanical response and the phase-field evolution are obtained by multiplying virtual field quantities, e.g. \(\delta {\varvec{u}}\) and \(\delta d\), which are simplified as

$$\begin{aligned} \int _{\varOmega _{0}} \bigg \{ -\rho _{0}\,\ddot{{\varvec{u}}}\,\delta {\varvec{u}} - \Big ( g\left( d\right) \varvec{\tau }^{+} + \varvec{\tau }^{-} \Big ):\nabla _{{\varvec{x}}} \delta {\varvec{u}} \bigg \}dV=0 \end{aligned}$$
(52)

and

$$\begin{aligned}&\int _{\varOmega _{0}} \bigg \{ -g'\left( d\right) \varPhi _{0}^{+}\,\delta d - \frac{{\mathcal {G}}_{c}}{l} d\, \delta d - \chi \frac{d-d^{n}}{\varDelta t} \, \delta d \nonumber \\&\qquad \qquad -\, {\mathcal {G}}_{c}l\,\nabla _{{\varvec{X}}} d\cdot \nabla _{{\varvec{X}}} \delta d \bigg \}dV=0, \end{aligned}$$
(53)

respectively. Within the FE framework, the unknowns are interpolated by the shape functions \(N^{I}\) as well as the nodal values \({\varvec{u}}^{I}\) and \(d^{I}\). The residuals and the tangents are obtained by

$$\begin{aligned} \begin{aligned} {\varvec{R}}_{{\varvec{u}}_{a}}^{I}&=-\int _{\varOmega } \bigg \{ \rho _{0}\,\ddot{{\varvec{u}}}_{a}\,N^{I} + \Big ( g\left( d \right) \,\varvec{\tau }_{ac}^{+} + \varvec{\tau }_{ac}^{-}\Big ) \nabla _{{\varvec{x}}_{c}} N^{I} \bigg \}dV, \\ {\varvec{R}}^{I}_{d}&=-\int _{\varOmega } \bigg \{ \left( g'(d)\,\varPhi _{0}^{+}\left( {\mathbf {F}}\right) +\frac{{\mathcal {G}}_{c}}{l}\, d + \chi \frac{d-d^{n}}{\varDelta t} \right) N^{I} \\&\qquad \qquad \quad + {\mathcal {G}}_{c}\,l\,\nabla _{{\varvec{X}}_{a}} N^{I}\,\nabla _{{\varvec{X}}_{a}} d \bigg \}dV,\\ {\varvec{K}}^{IJ}_{{\varvec{u}}_{a} {\varvec{u}}_{b}}&=\int _{\varOmega } \bigg \{ \bigg ( g\left( d \right) \, \mathbf {{\mathbb {C}}}_{acbd}^{+} +\mathbf {{\mathbb {C}}}_{acbd}^{-}+ \Big ( g\left( d \right) \,\varvec{\tau }_{cd}^{+}\\&\qquad \qquad \quad + \varvec{\tau }_{cd}^{-}\Big )\delta _{ab} \bigg ) \nabla _{{\varvec{x}}_{c}} N^{I}\,\nabla _{{\varvec{x}}_{d}} N^{J} \bigg \}dV, \\ {\varvec{K}}^{IJ}_{d d}&=\int _{\varOmega } \bigg \{ \bigg ( g''(d)\,\varPhi _{0}^{+}\left( {\mathbf {F}}\right) + \frac{{\mathcal {G}}_{c}}{l} + \frac{\chi }{\varDelta t} \bigg ) \, N^{I}\, N^{J} \\&\qquad \qquad \quad + {\mathcal {G}}_{c}\, l\, \nabla _{{\varvec{X}}_{a}} N^{I} \,\nabla _{{\varvec{X}}_{a}} N^{J} \bigg \} dV, \\ {\varvec{K}}^{IJ}_{{\varvec{u}}_{a} d}&=\int _{\varOmega } \bigg \{ g'\left( d \right) \varvec{\tau }_{ac}^{+}\,\,N^{J}\, \nabla _{{\varvec{x}}_{c}} N^{I} \bigg \}dV, \\ {\varvec{K}}^{IJ}_{d {\varvec{u}}_{a}}&=\int _{\varOmega } \bigg \{ g'\left( d \right) \varvec{\tau }_{ac}^{+}\,\,N^{I}\, \nabla _{{\varvec{x}}_{c}} N^{J} \bigg \}dV, \end{aligned} \end{aligned}$$
(54)

and the mass matrix yields

$$\begin{aligned} {\varvec{M}}^{IJ}_{{\varvec{u}}_{a} {\varvec{u}}_{b}}=\int _{\varOmega } \bigg \{ \rho _{0}\, N^{I}N^{J}\,\delta _{ab} \bigg \} dV. \end{aligned}$$
(55)

Regarding a staggered solution strategy, the coupling terms \( {\mathbf {K}}^{IJ}_{{\varvec{u}}_{a} d} \) and \( {\mathbf {K}}^{IJ}_{d {\varvec{u}}_{a}} \) are not taken into account, since they are solved by freezing the other evolution. In the sequel, assembling these matrices over all elements yields the global equilibrium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Kaliske, M. Fracture simulation of viscoelastic polymers by the phase-field method. Comput Mech 65, 293–309 (2020). https://doi.org/10.1007/s00466-019-01769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01769-1

Keywords

Navigation