Skip to main content

Advertisement

Log in

Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A flexible actuator finite element is developed and applied for the modelling of spatial mechanisms present in several industrial applications. A total Lagrangian framework is employed for the development of the finite deformation dynamic equilibrium using solid-like shell and 3D frame finite elements. Exploiting the total Lagrangian aspect of the formulation, the actuator motion is imposed by controlling the element reference configuration. It has the advantage of retaining the actuated bar flexibility, an important factor when simulating flexible mechanisms, and not requiring special treatments as constraint enforcement impositions. As the employed elements use alternative nodal parameters such as positions and generalized vectors to describe their kinematics, a treatment on the introduction of rotational connections—spherical, revolute and pinned joints—largely present in actuated mechanisms, is developed. The nonlinear equations of motion are solved by the Newton–Raphson method. Examples are presented to evaluate the proposed flexible actuator finite element regarding its dynamical behaviour in mechanisms where its use is of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Coda HB, Paccola RR (2011) A FEM procedure based on positions and unconstrained vectors applied to non-linear dynamic of 3D frames. Finite Elem Anal Des 47:319–333

    Article  Google Scholar 

  2. Coda HB, Paccola RR, Sampaio MDSM (2013) Positional description applied to the solution of geometrically non-linear plates and shells. Finite Elem Anal Des 67:66–75

    Article  MathSciNet  Google Scholar 

  3. Thomson MW (1999) The AstroMesh deployable reflector. In: IEEE antennas and propagation society international symposium: wireless technologies and information networks, APS 1999—Held in conjunction with USNC/URSI National Radio Science Meeting. IEEE, pp 1516–1519

  4. Takano T, Miura K, Natori M et al (2004) Deployable antenna with 10-m maximum diameter for space use. IEEE Trans Antennas Propag 52:2–11. https://doi.org/10.1109/TAP.2003.820968

    Article  Google Scholar 

  5. Meguro A, Shintate K, Usui M, Tsujihata A (2009) In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII. Acta Astronaut 65:1306–1316. https://doi.org/10.1016/j.actaastro.2009.03.052

    Article  Google Scholar 

  6. Mitsugi J, Ando K, Senbokuya Y, Meguro A (2000) Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut 47:19–26. https://doi.org/10.1016/S0094-5765(00)00014-X

    Article  Google Scholar 

  7. Madeira RH, Coda HB (2016) Kelvin viscoelasticity and lagrange multipliers applied to the simulation of nonlinear structural vibration control. Lat Am J Solids Struct 13:964–991. https://doi.org/10.1590/1679-78252624

    Article  Google Scholar 

  8. Cardona A, Géradin M (1989) Time integration of equations of motion in mechanism analysis. Comput Struct 33:801–820. https://doi.org/10.1016/0045-7949(89)90255-1

    Article  MATH  Google Scholar 

  9. Jelenic G, Crisfield MA (2001) Dynamic analysis of 3D beams with joints in presence of large rotations. Comput Methods Appl Mech Eng 190:4195–4230. https://doi.org/10.1016/s0045-7825(00)00344-3

    Article  MATH  Google Scholar 

  10. Gebhardt CG, Hofmeister B, Hente C, Rolfes R (2019) Nonlinear dynamics of slender structures: a new object-oriented framework. Comput Mech 63:219–252. https://doi.org/10.1007/s00466-018-1592-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Gay Neto A (2017) Simulation of mechanisms modeled by geometrically-exact beams using Rodrigues rotation parameters. Comput Mech 59:459–481. https://doi.org/10.1007/s00466-016-1355-2

    Article  MathSciNet  Google Scholar 

  12. Ibrahimbegović A, Mamouri S (2000) On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model. Comput Methods Appl Mech Eng 188:805–831. https://doi.org/10.1016/s0045-7825(99)00363-1

    Article  MATH  Google Scholar 

  13. Crisfield MA, Moita GF (1996) A unified co-rotational framework for solids, shells and beams. Int J Solids Struct 33:2969–2992. https://doi.org/10.1016/0020-7683(95)00252-9

    Article  MATH  Google Scholar 

  14. Teh LH, Clarke MJ (1999) Plastic-zone analysis of 3D steel frames using beam elements. J Struct Eng 125:1328–1337. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:11(1328)

    Article  Google Scholar 

  15. Cardona A (2000) Superelements modelling in flexible multibody dynamics. Multibody Syst Dyn 4:245–266

    Article  MathSciNet  Google Scholar 

  16. Wasfy TM, Noor AK (1996) Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements. Comput Methods Appl Mech Eng 138:187–211. https://doi.org/10.1016/S0045-7825(96)01113-9

    Article  MATH  Google Scholar 

  17. Coda HB, Paccola RR (2009) Unconstrained finite element for geometrical nonlinear dynamics of shells. Math Probl Eng 2009:1–32. https://doi.org/10.1155/2009/575131

    Article  MathSciNet  MATH  Google Scholar 

  18. Simo JC, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions—the plane case. I. J Appl Mech 53:849–854

    Article  Google Scholar 

  19. Simo JC, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions—the plane case. II. J Appl Mech 53:855–863

    Article  Google Scholar 

  20. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  21. Lanczos C (1970) The variational principles of mechanics. Dover Publications, New York

    MATH  Google Scholar 

  22. Siqueira TM, Coda HB (2017) Total Lagrangian FEM formulation for nonlinear dynamics of sliding connections in viscoelastic plane structures and mechanisms. Finite Elem Anal Des 129:63–77. https://doi.org/10.1016/j.finel.2016.12.005

    Article  MathSciNet  Google Scholar 

  23. Ogden RW (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    MATH  Google Scholar 

  24. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  25. Bonet J, Wood RD, Mahaney J, Heywood P (2000) Finite element analysis of air supported membrane structures. Comput Methods Appl Mech Eng 190:579–595. https://doi.org/10.1016/s0045-7825(99)00428-4

    Article  MATH  Google Scholar 

  26. Coda HB, Paccola RR (2007) An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Comput Mech 40:185–200

    Article  Google Scholar 

  27. Bischoff M, Ramm E (2000) On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation. Int J Solids Struct 37:6933–6960

    Article  Google Scholar 

  28. Coda HB (2009) A solid-like FEM for geometrically non-linear 3D frames. Comput Methods Appl Mech Eng 198:3712–3722. https://doi.org/10.1016/j.cma.2009.08.001

    Article  MathSciNet  MATH  Google Scholar 

  29. Coda HB, Paccola RR (2010) Improved finite element for 3D laminate frame analysis including warping for any cross-section. Appl Math Model 34:1107–1137

    Article  MathSciNet  Google Scholar 

  30. Géradin M, Cardona A (2001) Flexible multibody dynamics: a finite element approach. Wiley, Chichester

    Google Scholar 

  31. Ota NSN, Wilson L, Gay Neto A et al (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74. https://doi.org/10.1016/J.FINEL.2016.07.008

    Article  MathSciNet  Google Scholar 

  32. Simo JC (1993) On a stress resultant geometrically exact shell model. Part VII: shell intersections with 5/6-DOF finite element formulations. Comput Methods Appl Mech Eng 108:319–339. https://doi.org/10.1016/0045-7825(93)90008-L

    Article  MATH  Google Scholar 

  33. Betsch P, Sänger N (2009) On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Comput Methods Appl Mech Eng 198:1609–1630. https://doi.org/10.1016/j.cma.2009.01.016

    Article  MathSciNet  MATH  Google Scholar 

  34. Warburton GB (1976) The dynamical behaviour of structures, 2nd edn. Pergamon Press, New York

    Google Scholar 

  35. Sokolov A, Xirouchakis P (2007) Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure. Mech Mach Theory 42:541–557. https://doi.org/10.1016/j.mechmachtheory.2006.05.004

    Article  MathSciNet  MATH  Google Scholar 

  36. Dasgupta B, Mruthyunjaya TS (2000) Stewart platform manipulator: a review. Mech Mach Theory 35:15–40. https://doi.org/10.1016/S0094-114X(99)00006-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Camarillo DB, Milne CF, Carlson CR et al (2008) Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robot 24:1262–1273. https://doi.org/10.1109/TRO.2008.2002311

    Article  Google Scholar 

  38. NASA (2015) Reference guide to the International Space Station. National Aeronautics and Space Administration, Johnson Space Center, Houston

  39. NASA Integrated Truss Structure. In: Natl. Aeronaut. Sp. Adm. https://www.nasa.gov/mission_pages/station/structure/elements/its.html#.W60aRXtKiUn. Accessed 27 Sept 2018

  40. Wikipedia Contributors (2018) Integrated truss structure. In: Wikipedia, Free Encycl. https://en.wikipedia.org/w/index.php?title=Integrated_Truss_Structure&oldid=857684272. Accessed 27 Sept 2018

  41. NASA (2006) Space ISS Spacewalk 2. AP Archive. In: Natl. Aeronaut. Sp. Adm. TV. http://www.aparchive.com/metadata/youtube/4cadb37392aec1c1f1ad3219b09f7753. Accessed 27 Sept 2018

  42. Williams S (2007) ISS STS-120 Radiator Deployment. Youtube. https://www.youtube.com/watch?v=HWZRhg0iez0. Accessed 27 Sept 2018

  43. Siqueira TM, Coda HB (2016) Development of sliding connections for structural analysis by a total Lagrangian FEM formulation. Lat Am J Solids Struct. https://doi.org/10.1590/1679-78252494

    Article  Google Scholar 

  44. Laursen TA, Puso MA, Sanders J (2012) Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Comput Methods Appl Mech Eng 205–208:3–15. https://doi.org/10.1016/J.CMA.2010.09.006

    Article  MathSciNet  MATH  Google Scholar 

  45. Gay Neto A, Wriggers P (2019) Computing pointwise contact between bodies: a class of formulations based on master–master approach. Comput Mech. https://doi.org/10.1007/s00466-019-01680-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP-2016/00622-0 and FAPESP-2018/18321-1) for the research grant. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Morkis Siqueira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Stewart platform motion, as described in the example, is imposed by varying the actuators lengths calculated from the following displacements of the control points in Fig. 12a. The central point G displacements is:

$$\begin{aligned} {{\mathbf {d}}_{\text {G}}}=\left\{ \begin{matrix} -R(\psi )\sin \psi \\ R(\psi )\cos \psi \\ \frac{{{h}_{0}}}{2}\sin \left( \frac{2\pi }{5}t \right) \\ \end{matrix} \right\} , \end{aligned}$$
(52)

where the z-axis amplitude is \({{h}_{0}}=0.30\,\text {m}\) and the parametric radius evolution is written as:

$$\begin{aligned} R(\psi )=\left\{ \begin{array}{l} \frac{{{R}_{\max }}\psi }{2\pi }\quad \quad \text {if}\quad \quad \psi \le 2\pi \, \text {rad} \\ {{R}_{\max }}\quad \quad \,\,\,\, \text {if}\quad \quad \psi >2\pi \, \text {rad} \\ \end{array} \right. , \end{aligned}$$
(53)

with the maximum radius being \({{R}_{\max }}=0.30\,\text {m}\). The angle evolution function is adopted as:

$$\begin{aligned} \psi (t)=\frac{\pi }{5}t\quad \quad 0\,\text {s}\le t\le 20\,\text {s}. \end{aligned}$$
(54)

The displacements of the other control points are:

$$\begin{aligned} {{\mathbf {d}}_{\text {A}}}= & {} {{\mathbf {d}}_{\text {G}}}+\left\{ \begin{array}{c} 0 \\ \frac{2h}{3}(\cos \beta -1) \\ \frac{2h}{3}\sin \beta \\ \end{array} \right\} \nonumber \\&+\left\{ \begin{array}{c} -\frac{2h}{3}\sin \gamma \\ \frac{2h}{3}(\cos \gamma -1) \\ 0 \\ \end{array} \right\} , \end{aligned}$$
(55)
$$\begin{aligned} {{\mathbf {d}}_{\text {B}}}= & {} {{\mathbf {d}}_{\text {G}}}+\left\{ \begin{array}{c} 0 \\ \frac{h}{3}(1-\cos \beta ) \\ -\frac{h}{3}\sin \beta \\ \end{array} \right\} \nonumber \\&+\left\{ \begin{array}{c} -\frac{\ell }{2}\cos \gamma +\frac{h}{3}\sin \gamma +\frac{\ell }{2} \\ -\frac{h}{3}\cos \gamma +\frac{\ell }{2}\sin \gamma +\frac{h}{3} \\ 0 \\ \end{array} \right\} , \end{aligned}$$
(56)

and

$$\begin{aligned} {{\mathbf {d}}_{\text {C}}}= & {} {{\mathbf {d}}_{\text {G}}}+\left\{ \begin{array}{c} 0 \\ \frac{h}{3}(1-\cos \beta ) \\ -\frac{h}{3}\sin \beta \\ \end{array} \right\} \nonumber \\&+\left\{ \begin{array}{c} \frac{\ell }{2}\cos \gamma +\frac{h}{3}\sin \gamma -\frac{\ell }{2} \\ -\frac{h}{3}\cos \gamma +\frac{\ell }{2}\sin \gamma +\frac{h}{3} \\ 0 \\ \end{array} \right\} , \end{aligned}$$
(57)

in which \(\ell =1.0\,\text {m}\) and \(h=\sqrt{3}/2\,\text {m}\) are the A-B-C equilateral triangle side and height. Equations (55)–(57) are valid for the following rotation angles evolution around the z-axis, \(\gamma \), and x-axis, \(\beta \), adopted as:

$$\begin{aligned} \beta (t)=\left\{ \begin{matrix} 0\quad \quad \quad \quad \,\,\quad \quad \quad 0\,\text {s}\le t\le 10\,\text {s} \\ -\frac{\pi }{6}\sin \left( \frac{\pi }{10}t \right) \quad \quad 10\,\text {s}\le t\le 20\,\text {s} \\ \end{matrix} \right. \end{aligned}$$
(58)

and

$$\begin{aligned} \gamma (t)=\left\{ \begin{array}{l} \frac{\pi }{4}\sin \left( \frac{\pi }{10}t \right) \quad \quad 0\, \text {s}\le t\le 10\, \text {s} \\ 0\quad \quad \quad \quad \,\,\,\quad 10\, \text {s}\le t\le 20\, \text {s} \\ \end{array} \right. . \end{aligned}$$
(59)

Known the control points proposed displacements, the i-leg length variation \(\varDelta {{L}_{i}}\) can be calculated as:

$$\begin{aligned} \varDelta {{L}_{i}}=\left\| {{{\mathbf {p}}}_{\text {X0}}}+{{{\mathbf {d}}}_{\text {X}}}-{{{\mathbf {p}}}_{i}} \right\| -{{L}_{i0}}, \end{aligned}$$
(60)

in which the initial length is \({{L}_{i0}}=1.0513\,\text {m}\), \({{\mathbf {p}}_{i}}\) is the leg base coordinates, \({{\mathbf {p}}_{\text {X0}}}\) the initial coordinates of the associated platform control point and \({{\mathbf {d}}_{\text {X}}}\) its displacement as calculated above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, T.M., Coda, H.B. Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation. Comput Mech 64, 1517–1535 (2019). https://doi.org/10.1007/s00466-019-01732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01732-0

Keywords

Navigation