Skip to main content
Log in

Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present paper studies the efficient prediction of effective mechanical properties of heterogeneous material by the FCA (FEM-Cluster based reduced order model Analysis) method proposed in Cheng et al. (Comput Methods Appl Mech Eng 348:157–168, 2019). The principle of minimum complementary energy and its cluster form for the RUC subjected to applied uniform eigenstrains and the PHBCs (Periodic Homogeneous Boundary Conditions) are developed. By using the known interaction matrix, an alternative form of the principle of cluster minimum complementary energy is constructed and proved very efficient for updating the interaction matrix and the effective elastic modulus when the material properties of clusters change. Moreover, the proposed principle of cluster minimum complementary energy is applied for the incremental nonlinear analysis of the cluster reduced order model, and thus greatly improves the prediction of nonlinear effective properties of the RUC in online stage computed in Cheng et al. (Comput Methods Appl Mech Eng 348:157–168, 2019). A number of numerical examples illustrate the effectiveness and efficiency of the FCA approach with the proposed principle of cluster minimum complementary energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng GD, Li XK, Nie YH, Li HY (2019) FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157–184

    Article  MathSciNet  Google Scholar 

  2. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349–354

    Article  Google Scholar 

  3. Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  4. Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    Article  MATH  Google Scholar 

  5. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  6. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech ASME 21:236–240

    MATH  Google Scholar 

  7. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Phys 151:504–518

    Article  Google Scholar 

  8. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Article  MathSciNet  MATH  Google Scholar 

  9. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Article  Google Scholar 

  10. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  11. Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27:315–330

    Article  MATH  Google Scholar 

  12. Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A 437:291–310

    Article  MathSciNet  MATH  Google Scholar 

  13. Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311–327

    Article  MathSciNet  MATH  Google Scholar 

  14. Roussette S, Michel J-C, Suquet P (2009) Nonuniform transformation field analysis of elastic–viscoplastic composites. Compos Sci Technol 69:22–27

    Article  Google Scholar 

  15. Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    Article  MathSciNet  MATH  Google Scholar 

  16. Kanit T, Forest S, Galliet I et al (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679

    Article  MATH  Google Scholar 

  17. Trovalusci P, De Bellis ML, Ostoja-Starzewski M (2016) A statistically-based homogenization approach for particle random composites as micropolar continua. In: Generalized continua as models for classical and advanced materials. Springer, pp 425–441

  18. Reccia E, De Bellis ML, Trovalusci P, Masiani R (2018) Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos Part B Eng 136:39–45

    Article  Google Scholar 

  19. Kubair DV, Ghosh S (2018) Statistics informed boundary conditions for statistically equivalent representative volume elements of clustered composite microstructures. Mech Adv Mater Struct 25:1205–1213

    Article  Google Scholar 

  20. Hori M, Nemat-Nasser S (1999) On two micromechanics theories for determining micro–macro relations in heterogeneous solids. Mech Mater 31:667–682

    Article  Google Scholar 

  21. Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43:266–278

    Article  MathSciNet  MATH  Google Scholar 

  22. Bakhvalov NS, Panasenko GP (1989) Averaging processes in periodic media. Mathematical problems in mechanics of composite materials

  23. Bensoussan A, Lions J-L, Papanicolaou G (2011) Asymptotic analysis for periodic structures. American Mathematical Soc

  24. Oleınik OA, Shamaev AS, Yosifian GA (1992) Mathematical problems in the theory of strongly inhomogeneous elastic media, Moscow State University, Moscow 1990; English version, Mathematical problems in elasticity and homogenization

  25. Cai YW, Xu L, Cheng GD (2014) Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int J Solids Struct 51:284–292

    Article  Google Scholar 

  26. Cheng GD, Cai YW, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29:550–556

    Article  MathSciNet  MATH  Google Scholar 

  27. Yi SN, Xu L, Cheng GD, Cai YW (2015) FEM formulation of homogenization method for effective properties of periodic heterogeneous beam and size effect of basic cell in thickness direction. Comput Struct 156:1–11

    Article  Google Scholar 

  28. Zhao J, Li HY, Cheng GD, Cai YW (2016) On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method. Compos Struct 135:297–305

    Article  Google Scholar 

  29. Li Y, Abbès F, Hoang MP et al (2016) Analytical homogenization for in-plane shear, torsion and transverse shear of honeycomb core with skin and thickness effects. Compos Struct 140:453–462

    Article  Google Scholar 

  30. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233–3244

    Article  MATH  Google Scholar 

  31. Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  32. Terada K, Hirayama N, Yamamoto K et al (2014) Applicability of micro–macro decoupling scheme to two-scale analysis of fiber-reinforced plastics. Adv Compos Mater 23:421–450

    Article  Google Scholar 

  33. Terada K, Kato J, Hirayama N et al (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52:1199–1219

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  Google Scholar 

  35. Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62:1443–1460

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197:3911–3921

    Article  MATH  Google Scholar 

  37. Berdichevsky V (2009) Variational principles of continuum mechanics: I. Fundamentals. Springer Science & Business Media

  38. Hu HC (1981) Variational principal of elastic mechanics and its applications. Science Publisher

  39. Simo JC, Hughes TJR (2006) Computational inelasticity. Springer Science & Business Media

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengdong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

figure a

Appendix 2

In the following, we prove that the solutions of the RUC problem calculated by the principle of cluster minimum complementary energy of two forms are the same.

The first problem is to directly apply the eigenstrain \( \varvec{\varepsilon}^{*} \) to the RUC which is corresponding to the principle of cluster minimum complementary energy of the first form,

$$ \Pi _{ 1} (\varvec{\alpha ,\varepsilon}^{*}) = \frac{1}{2}\varvec{\alpha }^{\text{T}} {\mathbf{D}}^{\text{T}} {\mathbf{V}}{\mathbf{SD}}\varvec{\alpha }{ + }\varvec{\alpha }^{\text{T}} {\mathbf{D}}^{\text{T}} {\mathbf{V}}\varvec{\varepsilon}^{*} $$
(68)

which is Eq. (47). Its continuum formulation is as follows.

$$ \begin{array}{*{20}l} { ( {\text{a)}}\;\sigma_{ij,j}^{1} = 0,} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ { ( {\text{b)}}\;\varepsilon_{ij}^{1} = \frac{1}{2}\left( {u_{i,j}^{1} + u_{j,i}^{1} } \right),} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ {({\text{c}})\;\sigma_{ij}^{1} = C_{ijkl} \varepsilon_{kl}^{{{\prime }1}} ,\;\varepsilon_{kl}^{{{\prime }1}} = \varepsilon_{kl}^{1} - \varepsilon_{kl}^{1*} ,} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ {({\text{d}})\;u_{i}^{1} \in {\# ,}\;t_{i}^{1} \in - {\# } .} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega .} \hfill \\ \end{array} $$
(69)

where the superscript 1 denotes the first problem. \( {\# , - \# } \) denote the periodic boundary conditions of displacement and traction, and their formulations can refer to Eq. (1)(d)(e). \( \text{C}_{ijkl}^{{}} (x) \) denotes the elastic constitutive relation of the inhomogeneous medium. \( \varepsilon_{kl}^{1} , \, \varepsilon_{kl}^{{{\prime }1}} , \, \varepsilon_{kl}^{1*} \) denote the total strain, mechanical strain and Eigen strain.

The second problem is corresponding to the principle of cluster minimum complementary energy of the alternative form

$$ \Pi _{{\text{c1}}} (\varvec{\alpha },\varvec{\varepsilon}^{*}) = \frac{1}{2}\varvec{\alpha }^{\text{T}} {\mathbf{D}}^{\text{T}} {\mathbf{V}}{\mathbf{SD}}\varvec{\alpha }{ + }\varvec{\alpha }^{\text{T}} {\mathbf{D}}^{\text{T}} {\mathbf{VSD}}\varvec{\varepsilon}^{*} $$
(70)

which is Eq. (50).

Comparing Eq. (68) with Eq. (70), we can observe that this problem is to apply the eigenstrain \( {\mathbf{SD}}\varvec{\varepsilon }^{*} \) to the RUC. Note that the mechanical strain of the first problem in matrix form is \( \varvec{\varepsilon^{\prime}}^{ 1} = - {\mathbf{SD}}\varvec{\varepsilon}^{*} . \) Therefore, the second problem is to apply the negative mechanical strain of the first problem to the RUC. Its continuum formulation can be described as

$$ \begin{array}{*{20}l} { ( {\text{a)}}\;\sigma_{ij,j}^{2} = 0 ,} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ { ( {\text{b)}}\;\varepsilon_{ij}^{2} = \frac{1}{2}\left( {u_{i,j}^{2} + u_{j,i}^{2} } \right),} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ {({\text{c}})\;\sigma_{ij}^{2} = C_{ijkl} \varepsilon_{kl}^{{{\prime }2}} ,\varepsilon_{kl}^{{{\prime }2}} = \varepsilon_{kl}^{2} - \varepsilon_{kl}^{2*} \, \varepsilon_{kl}^{2*} = - (\varepsilon_{kl}^{1} - \varepsilon_{kl}^{1*} )} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega ,} \hfill \\ { ( {\text{d)}}\;u_{i}^{2} \in {\# ,}t_{i}^{2} \in - {\# } .} \hfill & {\left( {x_{1} , \, x_{2} } \right) \in \varOmega } \hfill \\ \end{array} $$
(71)

where the superscript 2 refers to the second problem. Now it can be easily checked that the problem (71) has the following solutions

$$ \sigma_{ij}^{2} { = }\sigma_{ij}^{ 1} ,\varepsilon_{kl}^{{{\prime }2}} { = }\varepsilon_{kl}^{{{\prime }1}} , \, \varepsilon_{kl}^{2} { = }\varepsilon_{kl}^{{{\prime }2}} + \varepsilon_{kl}^{2 *} = \varepsilon_{kl}^{{{\prime }1}} - \varepsilon_{kl}^{1} + \varepsilon_{kl}^{1*} = 0,\quad {\text{u}}_{i}^{2} = 0 $$
(72)

The first two equalities of Eq. (72) shows that the stress and mechanical strain of the two problems are the same. In another word, we can solve the second problem instead of the first problem. The second problem can be solved by the principle of cluster minimum complementary energy of the alternative form (68).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Cheng, G., Li, X. et al. Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. Comput Mech 64, 323–349 (2019). https://doi.org/10.1007/s00466-019-01710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01710-6

Keywords

Navigation