Skip to main content
Log in

Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The difficulties in dealing with discontinuities related to a sharp crack are overcome in the phase-field approach for fracture by modeling the crack as a diffusive object being described by a continuous field having high gradients. The discrete crack limit case is approached for a small length-scale parameter that controls the width of the transition region between the fully broken and the undamaged phases. From a computational standpoint, this necessitates fine meshes, at least locally, in order to accurately resolve the phase-field profile. In the classical approach, phase-field models are computed on a fixed mesh that is a priori refined in the areas where the crack is expected to propagate. This on the other hand curbs the convenience of using phase-field models for unknown crack paths and its ability to handle complex crack propagation patterns. In this work, we overcome this issue by employing the multi-level hp-refinement technique that enables a dynamically changing mesh which in turn allows the refinement to remain local at singularities and high gradients without problems of hanging nodes. Yet, in case of complex geometries, mesh generation and in particular local refinement becomes non-trivial. We address this issue by integrating a two-dimensional phase-field framework for brittle fracture with the finite cell method (FCM). The FCM based on high-order finite elements is a non-geometry-conforming discretization technique wherein the physical domain is embedded into a larger fictitious domain of simple geometry that can be easily discretized. This facilitates mesh generation for complex geometries and supports local refinement. Numerical examples including a comparison to a validation experiment illustrate the applicability of the multi-level hp-refinement and the FCM in the context of phase-field simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The run time comparison is performed on a desktop workstation using an Intel®CoreTM i7-3770K CPU with 32GB RAM

References

  1. Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10:1350002

    Article  MathSciNet  MATH  Google Scholar 

  2. Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J2 flow theory of plasticity. Finite Elem Anal Des 69:37–47

    Article  MATH  Google Scholar 

  3. Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: variational formulation and main properties. Mech Mater 80:351–367

    Article  Google Scholar 

  4. Ambati M, Gerasimov T, De Lorenzis L (2014) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57:149–167

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373

    Article  MathSciNet  Google Scholar 

  8. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  MATH  Google Scholar 

  9. Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):633–659

    Article  MathSciNet  MATH  Google Scholar 

  10. Babuska I, Szabo BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515–545

    Article  MathSciNet  MATH  Google Scholar 

  11. Badnava H, Msekl MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo-mechanical phase field model for fracture. Finite Elem Anal Des 138:31–47

    Article  Google Scholar 

  12. Belytschko T, Fish J, Bayliss A (1990) The spectral overlay on finite elements for problems with high gradients. Comput Methods Appl Mech Eng 81(1):71–89

    Article  MATH  Google Scholar 

  13. Belytschko T, Fish J, Engelmann BE (1998) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70(1):59–89

    Article  MATH  Google Scholar 

  14. Bog T, Zander N, Kollmannsberger S, Rank E (2017) Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method. Comput Mech 61:385–407

    Article  MathSciNet  MATH  Google Scholar 

  15. Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166

    Article  MathSciNet  Google Scholar 

  16. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Article  MathSciNet  MATH  Google Scholar 

  19. Bourdin B, Larsen CJ, Richardson C (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(2):133–143

    Article  MATH  Google Scholar 

  20. Braides A (1998) Approximation of free-discontinuity problems. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980–1012

    Article  MathSciNet  MATH  Google Scholar 

  22. Cajuhi T, Sanavia L,De Lorenzis L (2017) Phase-field modeling of fracture in variablysaturated porous media. Comput Mech. https://doi.org/10.1007/s00466-017-1459-3

  23. Chakraborty P, Zhang Y, Tonks MR (2016) Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput Mater Sci 113:38–52

    Article  Google Scholar 

  24. Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169

    Article  Google Scholar 

  25. Dauge M, Düster A, Rank E (2015) Theoretical and numerical investigation of the finite cell method. J Sci Comput 65(3):1039–1064

    Article  MathSciNet  MATH  Google Scholar 

  26. Duczek S, Joulaian M, Düster A, Gabbert U (2014) Numerical analysis of lamb waves using the finite and spectral cell methods. Int J Numer Methods Eng 99(1):26–53

    Article  MathSciNet  MATH  Google Scholar 

  27. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45–48):3768–3782

    Article  MathSciNet  MATH  Google Scholar 

  28. Düster A, Sehlhorst H, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50(4):413–431

    Article  MathSciNet  MATH  Google Scholar 

  29. Elhaddad M, Zander N, Bog T, Kudela L, Kollmannsberger S, Kirschke JS, Baum T, Ruess M, Rank E (2018) Multi-level hp-finite cell method forembedded interface problems with application in biomechanics. Int J Numer Methods Biomed Eng 34:2951

    Article  Google Scholar 

  30. Elhaddad M, Zander N, Kollmannsberger S, Shadavakhsh A, Nübel V, Rank E (2015) Finite cell method: high-order structural dynamics for complex geometries. Int J Struct Stabil Dyn 15(7):1540018

    Article  MathSciNet  MATH  Google Scholar 

  31. Fish J (1992) The s-version of the finite element method. Comput Struct 43(3):539–547

    Article  MATH  Google Scholar 

  32. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  33. Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312:276–303

    Article  MathSciNet  Google Scholar 

  34. Gockenbach MS (2011) Partial differential equations: analytical and numerical methods. Society for Indsutrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  35. Gültekin O, Dal H, Holzapfel GA (2016) A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput Methods Appl Mech Eng 312:542–566

    Article  MathSciNet  Google Scholar 

  36. Gültekin O, Dal H, Holzapfel GA (2017) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput Methods Appl Mech Eng 331:23–52

    Article  MathSciNet  Google Scholar 

  37. Heider Y, Markert B (2016) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  38. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor–corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    Article  MathSciNet  MATH  Google Scholar 

  39. Hennig P, Ambati M, De Lorenzis L, Kästner M (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Comput Methods Appl Mech Eng 334:313–336

    Article  MathSciNet  Google Scholar 

  40. Hennig P, Müller S, Kästner M (2016) Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput Methods Appl Mech Eng 305:316–339

    Article  MATH  Google Scholar 

  41. Hofacker M, Miehe C (2013) A phase-field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int J Numer Methods Eng 93:276–301

    Article  MathSciNet  MATH  Google Scholar 

  42. Joulaian M, Duczek S, Gabbert U, Düster A (2014) Finite and spectral cell method for wave propagation in heterogeneous materials. Comput Mech 54(3):661–675

    Article  MathSciNet  MATH  Google Scholar 

  43. Joulaian M, Hubrich S, Düster A (2016) Numerical integration of discontinuities on arbitrary domains based on moment fitting. Comput Mech 57:979–999

    Article  MathSciNet  MATH  Google Scholar 

  44. Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394

    Article  MathSciNet  Google Scholar 

  45. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  Google Scholar 

  46. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Adv Model Simul Eng Sci 2(1):1–22

    Article  Google Scholar 

  47. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3D. Comput Methods Appl Mech Eng 306:406–426

    Article  MathSciNet  Google Scholar 

  48. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634

    Article  Google Scholar 

  49. Li B, Peco C, Mllán D, Arias I, Arroyo M (2014) Phase-field modelingand simulation of fracture in brittle materials with stronglyanisotropic surface energy. Numer Methods Eng 102:711–727

    Article  Google Scholar 

  50. De Lorenzis L, McBride A, Reddy D (2016) Phase-field modeling of fracture in single crystal plasticity. GAMM Mitt 39(1):7–34

    Article  MathSciNet  MATH  Google Scholar 

  51. May S, Vignollet J, De Borst R (2015) A numerical assessment of phase-field models for brittle and cohesive fracture: convergence and stress oscillations. Eur J Mech A/Solids 52:72–84

    Article  MathSciNet  MATH  Google Scholar 

  52. Mesgarnejad A, Bourdin B, Khonsari MM (2013) A variational approach to the fracture of brittle thin films subject to out-of-plane loading. J Mech Phys Solids 61:2360–2379

    Article  MathSciNet  Google Scholar 

  53. Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation. Comput Methods Appl Mech Eng 294:489–522

    MATH  Google Scholar 

  54. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  55. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  56. Mikelić A, Wheeler MF, Wick T (2015) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul 13(1):367–398

    Article  MathSciNet  MATH  Google Scholar 

  57. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  58. Moore PK, Flaherty JE (1992) Adaptive local overlapping grid methods for parabolic systems in two space dimensions. J Comput Phys 98(1):54–63

    Article  MATH  Google Scholar 

  59. Mote CD (1971) Global-local finite element. Int J Numer Methods Eng 3(4):565–574

    Article  MathSciNet  MATH  Google Scholar 

  60. Nitsche J (1971) über ein variationsprinzip zur lösung von dirichlet problemen bei verwendung von teilräumen die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15

    Article  MathSciNet  MATH  Google Scholar 

  61. Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133

    Article  MathSciNet  MATH  Google Scholar 

  62. Parvizian J, Düster A, Rank E (2011) Topology optmization using the finite cell method. Optim Eng 13(1):57–78

    Article  MATH  Google Scholar 

  63. Patil RU, Mishra BK, Singh IV (2018) An adaptive multiscale phase field method for brittle fracture. Comput Methods Appl Mech Eng 329:254–288

    Article  MathSciNet  Google Scholar 

  64. Raina A, Miehe C (2016) A phase-field model for fracture in biological tissues. Biomech Modeling Mechanobiol 15(3):479–496

    Article  Google Scholar 

  65. Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101(1–3):299–313

    Article  MATH  Google Scholar 

  66. Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: A high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45–46):3200–3209

    Article  MathSciNet  MATH  Google Scholar 

  67. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

    Article  MathSciNet  MATH  Google Scholar 

  68. Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71

    Article  MathSciNet  MATH  Google Scholar 

  69. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11(3–4):425–437

    Article  Google Scholar 

  70. Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9(4):931–938

    Article  Google Scholar 

  71. Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9):1171–1202

    Article  MathSciNet  MATH  Google Scholar 

  72. Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161

    Article  MathSciNet  MATH  Google Scholar 

  73. Shivakumar KN, Tan PW, Newman JC Jr (1988) A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int J Fract 36(3):R43–R50

    Google Scholar 

  74. Solin P, Dubcova L, Dolezel I (2010) Adaptive hp-FEM with arbitrary-level hanging nodes for maxwells equations. Adv Appl Math Mech 2(4):518–532

    Article  MathSciNet  Google Scholar 

  75. Stavrev A, Shen LH, Varduhn V, Behr M, Elgeti S, Schillinger D (2016) Geometrically accurate, efficient, and flexible quadrature techniques for the tetrahedral finite cell method. Comput Methods Appl Mech Eng 310:646–673

    Article  MathSciNet  Google Scholar 

  76. Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non Linear Mech 97:1–21

    Article  Google Scholar 

  77. Steinke C, Özenc K, Chinaryan G, Kaliske M (2016) A comparative study of the r-adaptive material force approach and the phase-field method in dynamic fracture. Int J Fract 168(2):133–143

    Google Scholar 

  78. Di Stolfo P, Schröder A, Zander N, Kollmannsberger S (2016) An easy treatment of hanging nodes in hp-finite elements. Finite Elem Anal Des 121:101–117

    Article  MathSciNet  Google Scholar 

  79. Szabo BA (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  80. Thiagarajan V, Shapiro V (2014) Adaptively weighted numerical integration over arbitrary domains. Comput Math Appl 67:1682–1702

    Article  MathSciNet  MATH  Google Scholar 

  81. Verhoosel CV, De Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 1:43–62

    Article  MathSciNet  MATH  Google Scholar 

  82. Verhoosel CV, van Zwieten GJ, van Rietbergen B, de Borst R (2015) Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Comput Methods Appl Mech Eng 284:138–164

    Article  MathSciNet  MATH  Google Scholar 

  83. Volokh KY (2004) Comparison between cohesive zone models. Commun Numer Methods Eng 20:845–856

    Article  MATH  Google Scholar 

  84. Wu T, Carpiuc-Prisacari A, Poncelet M, De Lorenzis L (2017) Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions. Eng Fract Mech 182:652–688

    Google Scholar 

  85. Wu T, De Lorenzis L (2016) A phase-field approach to fracture coupled with diffusion. Comput Methods Appl Mech Eng 312:196223

    MathSciNet  Google Scholar 

  86. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

  87. Zander N (2016) Multi-level hp-FEM: dynamically changing high-order mesh refinement with arbitrary hanging nodes. PhD thesis, Technische Universität München

  88. Zander N, Bog T, Elhaddad M, Espinoza R, Joly A, Hu H, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCM lab: a finite cell research toolbox for MATLAB. Adv Eng Softw Comput Methods Appl Mech Eng 74:49–63

    Google Scholar 

  89. Zander N, Bog T, Kollmannsberger S, Schillinger D, Rank E (2015) Multi-level hp-adaptivity:high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput Mech 55(3):499–517

    Article  MathSciNet  MATH  Google Scholar 

  90. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Methods Appl Mech Eng 64(11):3527–3541

    MathSciNet  MATH  Google Scholar 

  91. Zander N, Ruess M, Bog T, Kollmannsberger S, Rank E (2017) Multi-level hp-adaptivity for cohesive fracture modeling. Int J Numer Methods Eng 109(13):1723–1755

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) under Grant RA 624/27-2 as well as the European Research Council under Grant ERC-2014StG 637164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nagaraja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraja, S., Elhaddad, M., Ambati, M. et al. Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Comput Mech 63, 1283–1300 (2019). https://doi.org/10.1007/s00466-018-1649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1649-7

Keywords

Navigation